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Maŕıa del Ŕıo Francos

PRAPORNI GRAFI IN GRAFI SIMETRIJSKIH TIPOV

Doktorska disertacija

MENTOR: prof. dr. Tomaž Pisanski
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Abstract

A map, as a 2-cell embedding of a graph on a closed surface, is called a k-orbit map

if the group of automorphisms (or symmetries) of the map partitions its set of flags into

k orbits. In 2012, Steve Wilson introduced the concept of maniplex, aming to unify the

notion of maps and abstract polytopes. In particular, maniplexes generalise maps on sur-

faces to higher ranks. The combinatorial structure of a maniplex of rank (n − 1) (or

an (n − 1)-maniplex) is completely determined by an edge-coloured n-valent graph with

chromatic index n, with n ≥ 1, often called the flag graph of the maniplex. Maps will be

regarded as maniplexes of rank 2 (or 2-maniplexes), and defined as Lins and Vince studied

the combinatorial maps since 1982-83. Thus, similarly to maps, a k-orbit maniplex is one

that has k orbits of flags under the action of its automorphism group. In the first part of

this thesis we introduce the notion of symmetry type graphs of maniplexes and make use

of them to study k-orbit maniplexes, as well as fully-transitive 3-maniplexes. We classify

all possible symmetry types of k-orbit 2-maniplexes for k ≤ 5, as well as all self-dual,

properly and improperly, k-orbit maps with k ≤ 7. Moreover, we show that there are no

fully-transitive k-orbit 3-maniplexes with k > 1 an odd number, we classify 3-orbit mani-

plexes and determine all face transitivities for 3- and 4-orbit maniplexes. Furthermore,

we give generators of the automorphism group of a maniplex, given its symmetry type

graph. The second part of this work is motivated by the classification for k-orbit, up to

k ≤ 4, that Orbanić, Pellicer and Weiss gave. Thus, motivated by their results, we use

symmetry type graphs to extend such study and classify all the types of k-orbit maps with

the same operations on maps, up to k ≤ 6. Furthermore, we studied other operations on

maps, such as the chamfering and leapfrog operations. In particular, we determine all

possible symmetry types of maps that result from other maps after applying the chamfer-

ing operation and give the number of possible flag-orbits that has the chamfering map of

a k-orbit map.

Mathematics Subject Classification (2010): 52B15, 05C25, 57M20, 52B10.

Keywords. Flag graph, symmetry type graph, k-orbit map, maniplex, medial, cham-

fering, truncation, leapfrog.
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Povzetek

Zemljevid (t.j. celična vložitev grafa na sklenjeno ploskev) imenujemo k-orbitni zeml-

jevid, če grupa avtomorfizmov (oz. simetrij) zemljevida razdeli njegovo množico praporov

v k orbit. Pred kratkim (2012) je Steve Wilson, v želji da poenoti pojma zemljevidov in

abstraktnih politopov, vpeljal t.i. maniplekse. Manipleksi predstavljajo posplošitev zeml-

jevidov na objekte vǐsjih dimenzij oziroma rangov. Kombinatorična struktura manipleksa

ranga (n−1) (ali (n−1)-manipleksa) je popolnoma določena s po povezavah pobarvanim

n-valentnim grafom (s kromatičnim številom n ≥ 1), t.i. prapornim grafom manipleksa.

Zemljevide obravnavamo kot maniplekse ranga 2 (oz. 2-maniplekse) in jih definiramo v

skladu z raziskavami kombinatoričnih zemljevidov Linsa in Vincea v letih 1982-83. Tako

je, podobno kot pri zemljevidih, k-orbitni manipleks definiran kot manipleks, ki ima

k prapornih orbit glede na delovanje njegove grupe avtomorfizmov. V prvem delu dis-

ertacije vpeljemo pojem simetrijskega grafa manipleksa in uporabimo simetrijske grafe pri

obravnavi k-orbitnih manipleksov ter polno tranzitivnih 3-manipleksov. Klasificiramo vse

možne simetrijske tipe k-orbitnih manipleksov za k ≤ 5, pa tudi vseh pravih in nepravih

samodualov k-orbitnih zemljevidov za k ≤ 7. Pokažemo, da za nobeno liho število k > 1

ne obstaja polno tranzitiven k-orbitni 3-manipleks, klasificiramo 3-orbitne maniplekse in

določimo vse tranzitivne avtomorfizme lic 3- in 4-orbitnih manipleksov. Predstavimo tudi

generatorje grupe avtomorfizmov manipleksa, ki utreza danemu simetrijskemu grafu. Or-

banić, Pellicer in Weiss so klasificirali k-orbitne zemljevide za vrednosti k ≤ 4 s pomočjo

operacij na zemljevidih, npr. z operacijama sredinjenja (angl. medial) in prisekanja (angl.

truncation). V drugem delu disertacije na podlagi teh rezultatov uporabimo simetrijske

grafe za razširitev takšnih raziskav in klasificiramo vse tipe k-orbitnih zemljevidov z istima

operacijama na zemljevidih za vrednosti k ≤ 6. Razǐsčemo tudi druge operacije na zeml-

jevidih, kot sta npr. operaciji brušenja (angl. chamfering) in preskoka (angl. leapfrog).

Določimo tudi vse možne simetrijske tipe zemljevidov, ki jih dobimo iz drugih zemljevidov

z operacijama brušenja, in razǐsčemo, koliko prapornih orbit lahko ima brušeni zemljevid

k-orbitnega zemljevida.

Math. Subject Classification (2010): 52B15, 05C25, 57M20, 52B10.

Ključne besede: graf praporov, simetrijski graf, k-orbitni zemljevid, manipleks,

sredinjenje, brušenje, prisekanje, preskok.
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Introduction

Throughout the years, the study of symmetric objects has been of interest to math-

ematicians, already in ancient times with the Platonic and Archimedean solids being a

prime example. The idea of “the most symmetric” polyhedra, i.e. regular or Platonic

polyhedra, was later an inspiration for several important generalizations: from regular

maps to regular abstract polytopes.

We concentrate our study to objects known as maps and maniplexes of rank n, whose

combinatorial structure is completely determined by an edge-coloured n-valent graph with

chromatic index n, often called the flag graph. In particular, the flag graph of a map is

a cubic graph. While abstract polytopes are a combinatorial generalisation of classical

polyhedra and polytopes ([40]), maniplexes generalise maps on surfaces and (the flag graph

of) abstract polytopes; maps shall be regarded as maniplexes of rank 2 (or 2-maniplexes).

Some other interesting characteristics regarding the flag graph are described in [1].

A maniplex is called a k-orbit maniplex if its group of automorphisms, or symmetries,

partitions the set of flags into exactly k orbits. The most symmetric maniplexes are

known as regular, or reflexible, maniplexes, those for which its automorphism group acts

transitively on their set of flags, i.e. they have exactly one flag-orbit. Other type of highly

symmetric maniplexes is the chiral type, which does not allow reflections as symmetries

(2-orbit maniplexes with maximum degree of symmetry by rotation). While these two

types of maps and polytopes have been widely studied ([40, 57] and [28, 33, 46]), little is

known about those that are neither regular nor chiral. Hence, a natural question is: how

many possible types of maniplexes can we find that are neither regular nor chiral? There

is only one type of 1-orbit maniplexes, it coincides with the notion of regular maniplexes.

When we refer to 2-orbit maniplexes, chiral ones constitute just one type. There are

2n−1 − 2 other 2-orbit types of n-maniplexes.

In [30] Hubard gives a complete characterisation of the automorphism groups of 2-orbit

and fully-transitive polyhedra (i.e. polyhedra transitive on vertices, edges and faces) in

terms of distinguished generators. Moreover, she finds generators of the automorphism

group of a 2-orbit polytope of any given rank. Duarte and Hubard studied in [23] and

[29], respectively, all seven types of 2-orbit maps, in different contexts.

1
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Highly symmetric maniplexes can also be regarded to those with many face transitiv-

ities. In particular, edge-transitive maps were studied by Širan, Tucker and Watkins in

[53]. Such maps have either 1, 2 or 4 orbits of flags under the action of the automorphism

group.

The aim of this work is to give a classification on the possible different symmetry

types of maniplexes. To fulfil our task we introduce a graph to which we refer as the

symmetry type graph of the maniplex. With the symmetry type graph of a maniplex we

can determine properties and information regarding the symmetries of the maniplex of

rank n− 1, such as its regularity, transitivity on vertices, edges, faces or any other face of

higher rank ≤ n − 1. Then, we can formally define the symmetry type of the maniplex.

That is, all those maniplexes that have isomorphic symmetry type graph belong to the

same symmetry type of maniplexes, labelled by corresponding the symmetry type graph

of the maniplex. A strategy of how to generate those graphs is shown in [4]. Dress and

Huson (1987) refer to such graphs as the Delaney-Dress symbol, [21]. (The reader can also

refer to [20, 34, 14] for more on the Delaney-Dress symbol.) Dress and Brinkmann (1996),

as well as Balaban and Pisanski (2012), give an application to mathematical chemistry in

[22] and [2], respectively. Symmetry type graphs of the Platonic and Archimedean solids

were determined in [36]. In [44], Orbanić, Pellicer, Pisanski and Tucker (2011), show

the edge-transitive maps fall into 14 types, each of them described by its symmetry type

graph.

Orbanić, Pellicer and Weiss gave a classification for k-orbit maps, up to k ≤ 4, using

operations on maps, as the medial and truncation operation, [45]. Motivated on their

results, in this thesis, we give an extension and complete the classification for k-orbit maps

with the same operations on maps, up to k ≤ 6. As it is shown in [45], the medial of a k-

orbit map can have either k or 2k flag orbits under the action of its automorphism group,

depending on whether the original map is or not self-dual. Also, concerning truncation

of a k-orbit map, Orbanić, Pellicer and Weiss showed that the truncated map might have

either k, 3k
2

or 3k orbits on its flags under the action of its automorphism group, depending

if the original map satisfies certain conditions. From applying the medial and truncation

operations to maps, we present the possible symmetry types of k-orbit maps, for k ≤ 7

and k = 9. We also enumerate in a compact way (Table 3.5) all possible symmetry types

of maps up to k ≤ 10. Furthermore, we studied other operations on maps, such as the

chamfering and leapfrog operations, leading to another question: How many flag-orbits

has a map that comes from a k-orbit map, after applying any operation on a map?

The content of this work is divided in two parts. In the first part we present basic

notions concerning permutation groups and graph theory. As well as, in Chapters 2 and 3,

we define and review some basic theory on maps, maniplexes and symmetry type graphs,

and found all possible symmetry types of k-orbit maps up to k ≤ 5. For maps, we use

an equivalent definition to that proposed by Lins and Vince (1982-83) in [37] and [54],
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respectively, and for maniplexes we use the definition given by Wilson (2012) in [56]. To

conclude the first part of the thesis, in Chapter 4, we introduce the three well-known

operators on maps and maniplexes: dual, Petrie dual and opposite. These were first

described by Wilson in [57] (1979) for regular maps, later by Lins in [37] (1982) for all

maps, and in [35] (1983) Jones and Thornton study these operators from an algebraic

point of view. We use the symmetry type graph to show some properties of these three

operators. Also, we analyse how the dualities of a map work on its symmetry type graph

to define the extended symmetry type graph of a self-dual map.

In the second part we give the extension to the results in [45] for medial and truncation

of k-orbit maps, and study the chamfering and leapfrog operations. All four operations

can be described as subdivision of the triangles that correspond to the flags of the original

map (see for example [32, 50]). Equivalently, we may describe these operations as rules

transforming the flag graph of the original map to the flag graph of its medial, chamfering,

truncation or leapfrog map and work with its symmetry type graph. We solve the second

question regarding the number of flag-orbits that a map has after we apply the chamfering

and leapfrog operations.

In Chapters 5 and 7, we review the results obtained in [45] for medial and truncation,

and the complete list of possible symmetry type graphs with at most 6 vertices, as is given

in [13] and [11]. In particular, in Chapter 5 we describe how to obtain the symmetry type

graph of the medial of a map, by operations on the (extended) symmetry type graph of

the map, we give for up to 7 vertices, the possible symmetry type graphs that a properly

self-dual, an improperly self-dual and a medial map might have, and also show that every

type of edge-transitive map is a medial type, Theorem 5.1.

In Chapter 6 we define and use the chamfering operation on k-orbit maps and de-

termine, in terms of k, the number of possible flag-orbits that has the chamfering map

of a k-orbit map. This operation divides each flag triangle of the original map into four

different flags in the chamfering map. Thus, we find some conditions for the original

map as for its chamfering map in manner to determine whether the chamfering map of

a k-orbit map has 4k flag-orbits or not. Finally, we conclude with Theorems 6.1 and 6.2

where we obtain the number of flag-orbits that the chamfering map has if we repeat this

operation t times on the same map. This operation is also used on the study of fullerenes

(see [15]), for instance, which also leads to chemical applications as in [17]. Theorem 6.2

summarizes all the results presented in this chapter.

In Chapter 7 we determine the possible symmetry type graphs that a truncation of a

map can have, and give an extension of the results for k-orbit maps for k ≤ 7 and k = 9,

given in a series of Propositions (7.5–7.11), which results are listed in Tables 7.1 and 7.2.

Due to space, we leave on aside the truncation of 8-orbit maps. For this extension we use

the same local arrangement of flags used in [45]. Later, in Section 7.2, are defined the
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two-dimensional subdivision of a map and the leapfrog map, obtaining a classification of

the possible symmetry type graphs for the leapfrog of k-orbit maps, with k ≤ 7 and k = 9

(Table 7.3).

Finally, we present a summary of our results and remarks for further study.



Part I

Maps, Maniplexes and Symmetry
type graphs
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Chapter 1

Preliminaries

For the study of the structure of certain geometric objects as polyhedra or, in our case,

maps on surfaces, it is common to look at its symmetries. In this chapter are presented

basic definitions and results from permutation groups and graph theory that will be needed

to follow the content of this thesis. For further information on these subjects the reader

can refer to [5, 19], for permutation groups, and [3, 16], for graph theory.

1.1 Permutation groups

Let F be an arbitrary non-empty set. A bijection σ : F → F is a permutation of the

set F . The set of all permutations of F is a group called the symmetric (or permutation)

group of F , and is denoted as Sym(F). A permutation whose inverse is itself is called an

involution. If F and F ′ are two non-empty sets with the same cardinality, then the group

Sym(F) is isomorphic to the group Sym(F ′), and the isomorphism is given by σ 7→ σ′,

such that σ′ : Φ′ 7→ Ψ′ if and only if σ : Φ 7→ Ψ, where for each Φ ∈ F , Φ′ denotes its

images under the bijection between F and F ′.
The action (on the right) (F , G, ·) of a group G on a non-empty set F is a binary

function (F , G) : F × G → F defined as Φx := Φ · x, and is such that Φid = Φ, and

(Φx)y = Φxy, for every Φ ∈ F and x, y ∈ G. Given two actions (F , G, ·) and (F ′, G′, ∗),
a pair (f, g) consisting of a surjective morphism f : F → F ′ and a group epimorphism

g : G→ G′ is called an action epimorphism if for every Φ ∈ F and every x ∈ G it follows

that

f(Φx) := f(Φ · x) = f(Φ) ∗ g(x) := f(Φ)g(x).

If both f and g are one-to-one we refer to (f, g) as an action isomorphism.

For any element Φ ∈ F , the set of all images of Φ under the action of all elements in

7



8 1.1. PERMUTATION GROUPS

G is called the orbit of Φ under the action of G, and denoted by

ΦG := {Φx|x ∈ G}.
The set of all elements in G that fix a element Φ ∈ F forms a group, known as the

stabilizer of Φ under the action of G, and we denote this groups as

StabG(Φ) := {x ∈ G|Φx = Φ}.
The following are well known properties of both sets, ΦG and StabG(Φ), with Φ ∈ F , [19].

(i) Two orbits ΦG and ΨG are either equal (as sets) or disjoint, so the set of all orbits

is a partition of F into mutually disjoint subsets.

(ii) For x, y ∈ G and Φ,Ψ ∈ F , the stabilizer StabG(Φ) is a subgroup of G and

StabG(Ψ) = x−1StabG(Φ)x (is the conjugate class of other stabilizer) whenever

Ψ = Φx. Moreover, Φx = Φy if and only if StabG(Φ)x = StabG(Φ)y.

(iii) (The orbit-stabilizer property) ΦG ∼= G/StabG(Φ). If G is finite, then |ΦG| = [G :

StabG(Φ)] for all Φ ∈ F .

The set of all elements in a group G that conjugate a subgroup H ≤ G is called the

normalizer of H under the action of G, and we denote it as

NormG(H) := {x ∈ G|x−1Hx = H}.

If for any two elements Φ,Ψ ∈ F there is an element x ∈ G such that Φx = Φ, then it

is said that G acts transitively on F . Say this in other way, the action of G is transitive on

F whenever ΦG = F , for any Φ ∈ F . If the stabilizer of every Φ ∈ F under the action of

the group G is such that StabG(Φ) = id, then the action of G on F is called semi-regular.

Moreover, a transitive and semi-regular action of a group on a set is called a regular action.

Then we have the following properties supposing that G that acts transitively on a set F .

(i) For any Φ,Ψ ∈ F there exist x ∈ G such that StabG(Φ) = x−1StabG(Ψ)x (all

stabilizers are conjugated in G).

(ii) If G is finite, then [G : StabG(Φ)] = |F|, for each Φ ∈ F .

(iii) If G is finite, then the action of G is regular if and only if |G| = |F|.

The action of a group G on a set F can be extended to subsets of F . That is, for any

non-empty subset B ⊆ F the elements x ∈ G acting on B define the set Bx := {Ψx|Ψ ∈ B}.
If the action of G is transitive on F , then the subset B ⊆ F is called a block for G if for each

x ∈ G either Bx = B or Bx ∩ B = ∅. Furthermore, the set of all blocks Σ := {Bx|x ∈ G},
for a group G that acts transitively on the set F , form a partition of F and every element

in Σ is a block for G. The group G acts on the set Σ on a natural way.
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1.2 Graphs

A graph G := (V,E) is defined by a pair of sets V and E, also sometimes denoted

by V (G) and E(G). The elements in V are called vertices and those in E are pairs of

vertices, called edges. We shall say that two vertices u, v ∈ V are adjacent in G if the pair

{u, v} =: e is a element in E, where u and v are called the endpoints of e. The vertices

u, v ∈ V are said to be incident to the edge e := {u, v} ∈ E. We refer as the valency of

a vertex v ∈ V to the number of edges to which v is incident in G. If all vertices in a

graph G have the same valency, say n, then we shall say that G is an n-valent graph. In

particular, a 3-valent graph is named as a cubic graph.

There are different type of edges that one can find in a graph: parallel edges (or

multiple edges), that are two or more edges with the same endpoints, and loops, edges

whose both endpoints correspond to the same vertex. If a graph G have neither parallel

edges nor loops is called as a simple graph, otherwise G is known as general graph or a

multi-graph. There is another type of edge that can be used in graphs as those defined

in Section 1.3, these are semi-edges (or pending edges), edges with a single endpoint. We

refer to those graphs with semi-edges but no loops in them as pre-graphs, see for instance

[48]. An example of a simple graph is depicted in the left of Figure 1.1, and in the right is

a general graph with parallel edges in red, loops in colour blue and semi-edges in green.

Figure 1.1: Simple cube graph Q3 (left), and Q3 with loops, semi-edges and parallel edges (right).

Let H and G be two graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is

a subgraph of G. In case that V (H) = V (G) and E(H) ⊆ E(G), then H is a spanning

subgraph of G. An independent set of edges in a graph G is a set of edges such that no

two edges in the set have a vertex in common; similarly for vertices. A set of independent

edges in a graph G is also known as a matching of the graph. Moreover, an independent

set of edges in G such that each vertex of G is incident to an edge of the matching is a

perfect matching of G.

A walk in a graph is an alternating sequence of vertices and edges, but more commonly
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denoted as a sequence of vertices (v0, v1, . . . , vq) where the pairs {vi−1, vi} correspond to

elements in E, with 0 ≤ i ≤ q. The length of the walk corresponds to the value of q.

Whenever v0 = vq, the walk is then called a closed walk. The graph G is said to be a

connected graph if there is a walk connecting any pair of vertices in the graph.

A matching is a disconnected subgraph of a graph, a perfect matching is also known

as a 1-factor of the graph. Moreover, a 2-factor is a collection of cycles that spans all

vertices of the graph.

Whenever we can give a partition of two disjoint vertex sets in a connected graph

G, such that no vertex from a part is adjacent to any other of the same part, (i.e., all

the edges of G connect only vertices from both parts of the partition) then G is called a

bipartite graph. If the vertex set of G can be partitioned into more than two sets, with

the same property as before, then G is called multi-partite or n-partite graph.

Two graphs H and G are said to be isomorphic if there is an isomorphism ϕ : V (G)→
V (H), such that {ϕ(u), ϕ(v)} ∈ E(H) if and only if {u, v} ∈ E(G). An isomorphism

from a graph to itself is an automorphism of the graph. The set of all automorphisms of

a graph G forms a group, the automorphism group of G, denoted as Aut(G). A graph is

vertex-transitive (resp. edge-transitive) if acts transitively on V (G) (respectively E(G)).

1.2.1 Graph colourings

To define properties from a graph, it is helpful to either label the vertices or edges of

the graph that we are studying. Similarly, we can assign colours to the vertices and the

edges, in particular, we work with edge-coloured graphs. An edge-colouring of a graph G
is a function c : E → S, where S is a set of colours. Such edge-colouring is called proper

if c(e) 6= c(f) for any two adjacent edges e, f ∈ E (edges with at least one incident vertex

in common).

Note that if G can be partitioned into disjoint matchings, we can colour every matching

in G with a different colour, and define a proper edge-colouring of G. Hence, the union of

two disjoint matchings determine a 2-factor of G composed by even cycles with alternating

coloured edges.

There are two interesting subgroups of the automorphism group of a graph associated

with the edge-coloured graph Ĝ: the colour respecting automorphism group Autr(Ĝ), con-

sisting of all automorphisms of G that induce a permutation of the colours of the edges,

and the colour preserving automorphism group Autc(Ĝ), consisting of all automorphisms

of G that send two adjacent vertices by colour i into other two adjacent by the same

colour i. Clearly Autc(Ĝ) ≤ Autr(Ĝ) ≤ Aut(G). When the edge-colouring c of a graph

is clear from the context, we abuse notation and denote by G both the graph and the

edge-coloured graph, with this notation, Autc(G) ≤ Autr(G) ≤ Aut(G).
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1.3 Action graphs and Schreier coset graphs

Considering the group Sym(F), of permutations of a set F 6= ∅, we can define a graph

as a combinatorial representation of a subgroup H ≤ Sym(F) acting on the set F . Such

graph is know as an action graph ([38]) (see [38]).

1.3.1 Cayley graphs

Consider a non-trivial group G acting on a set F 6= ∅. Let S ⊂ G be a subset of G

such that S−1 = S 6= ∅. Define the Cayley graph G(F , S), as a graph with vertex set

F such that two vertices Φ,Ψ ∈ F are adjacent by and edge represented by an element

s ∈ S, whenever Φ = Ψs (similarly, Φs−1
= Ψ).

Example 1.1. Consider the set with four elements {a, b, c, d} and G its symmetric group.

Let S := {id, (ab)(cd)} ⊂ G. Then, we can build the Cayley graph with four vertices, and

semi-edges represented by id ∈ S and edges represented by (ab)(cd) ∈ S as is depicted in

Figure 1.2.

(ab)(cd)

(ab)(cd)

idid

id id

a b

c d

Figure 1.2: Cayley graph with four vertices a, b, c, d joined by blue semi-edges and black edges
representing the action of the elements id, (ab)(cd) ∈ S.

A walkW in the Cayley graph G(F , S) defines a word w := si0si1 · · · sin with si0 , si1 , . . . , sin ∈
S. Conversely, any word w := si0si1 · · · sin , in the group generated by the elements of S, in-

duces a walk W (Φ, w) starting at a vertex Φ ∈ F and ending at the vertex Φw. Moreover,

the Cayley graph G(F , S) is connected if and only if S generates a transitive subgroup of

G.

Another concept that will help us to understand the construction of the graphs in

Chapter 3 is the concept of covering projection.
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Covering projection

Given a graph G, and a partition X of its vertex set V , the quotient GX , with respect to

X , is defined as the pre-graph with vertex set X , such that for any two vertices A,B ∈ X ,

there is an edge from A to B if and only if there exists u ∈ A and v ∈ B such that there is

an edge from u to v. Edges between vertices in the same part of the partition X quotient

into semi-edges.

Let G and Ĝ be two graphs, suppose there exists a surjective function

ψ : V (G)→ V (Ĝ)

assigning to each vertex u ∈ V (G) a vertex in V (Ĝ) in such way that the set of edges

with incident vertex u ∈ V (G), is bijectively sent onto the set of edges with incident

vertex ψ(u) ∈ V (Ĝ), that is, ψ induces a bijection between {e ∈ E(G)|u ∈ e} and

{ê ∈ E(Ĝ)|Ψ(u) ∈ ê}. Then, Ψ is called a covering projection. The graph Ĝ is called base

graph and G is called covering graph.

Furthermore, supposing that G is a connected graph and that there is a group G

whose action is semi-regular on the vertices of G, then ψ : V (G) → V (Ĝ) is a regular

covering projection. Equivalently, ψ induces a quotient of G in the following sense: Let

G/G := {ΦG | Φ ∈ V (G)} be the set of all the orbits of the vertex-set of G. If there exist

an isomorphism ϕ : G/G→ Ĝ, which projects each orbit ΦG into a vertex in Ĝ, such that

the projection ψ = ϕ ◦ φG is well defined, where φG : G → G/G. And G is called a regular

covering, and the image Ĝ is also called a base graph, [27].

In Figures 1.3 and 1.4 are depicted two different covering graphs with base graph the

well-known Petersen graph.

ψ

Figure 1.3: Desargue graph G(10, 3) (left), as the covering graph of Petersen graph G(5, 2),
corresponding to a Kronecker cover or canonical double cover.

In Chapters 2 and 3, we define two different graphs: the flag graph and the symmetry

type graph of a map. Both graphs are used to understand the whole structure of our object
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ψ

Figure 1.4: Dodecahedron graph G(10, 2) (left), as the covering graph of Petersen graph G(5, 2),
with Z2 as the group acting on the vertices of G(10, 2).

of study: the maniplexes. These graphs are examples of connected action graphs. The

first one corresponds to a Schreier coset graph, while the second one is the base graph of

the flag graph as a covering graph.

1.3.2 Schreier coset graphs

According to [9], in [51], Schreier consider a graph whose vertices represent the cosets

of any given subgroup H of a given group G. That is, given a set S = {x1, . . . , xn} such

that its elements generate the group G, the right cosets Hx represent the vertices of the

“(right) Schreier colour graph”, and two vertices representing the cosets Hx and Hy are

joined by a coloured-edge represented by the element z ∈ S whenever Hy = Hxz. In case

that Hx = Hxz, then the vertex Hx is joined to itself with a loop of colour representing

z ∈ S. Ignoring the colours and adding direction to the edges, by ordering the pairs

(Hx,Hxz), we obtain a Schreier coset graph. In Figure 1.5 are depicted the Schreier

graphs of the permutation group on three elements S3, and of the alternating group A4.
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(12)

(13)

(23)

id

(123)
(132)

(134) (234)

(12)(34)

id

(143)

(123)

(243)

(124)

(13)(24)(14)(23)

(132)
(142)

S3 = 〈(12), (123)〉 A4 = 〈(12)(34), (123)〉

Figure 1.5: Schreier graphs of the group S3 := 〈(12), (123)〉 (left) and of the alternating group
A4 := 〈(12)(34), (123)〉).



Chapter 2

Maps and Maniplexes

The aim of this work is to give a classification on the symmetry types of maps and

maniplexes. Both, maps and maniplexes, can be defined by a set of flags F and a sequence

of relations connecting pairwise the elements in F . In this chapter, we first review the

basic theory regarding maps ([25, 27]), according to their flag structure, and later we

define maniplexes as a generalization of maps, given by Wilson in [56].

2.1 Maps

Topologically, a map is a 2-cellular embedding of a connected graph on a closed surface,

with no boundary, in the sense that the graph divides the surface into simply connected

regions. We shall say that the vertices and edges of the map correspond to those of

its underlying graph, and the faces of M are described by some distinguished closed

walks of the graph, homeomorphic to discs, in such way that each edge of the map is

in either exactly two distinguished cycles, or twice on the same one. (Note that the

distinguished cycles of the graph can be identified with the simply connected regions

obtained by removing the graph from the surface.)

We shall say that a mapM is non-degenerated whenever each edge ofM has exactly

two vertices, and every edge is incident to exactly two faces of M. Otherwise, M is is

said to be a degenerated map. In the second part of this thesis we work only with non-

degenerated maps, since the operations that we study, in such part, are well-defined only

for non-degenerated maps. In Figure 2.1 are depicted three different embeddings of the

cube graph Q3 on different surfaces, one in sphere and other two in the torus. In Figure

2.2 are depicted two examples of degenerated maps. We denote the set of vertices, edges

and faces of the map M as V (M), E(M) and F (M), respectively, and frequently refer

to them as the 0-, 1- and 2-faces of M, respectively.

15
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Figure 2.1: Three different embeddings of the cube graph Q3 on different surfaces, one in sphere
and other two in the torus.

Figure 2.2: Degenerated maps.
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In 1982-83, Lins and Vince studied the concept of combinatorial maps in [37] and [54],

respectively. For this work, we follow such combinatorial definition of a map. This is, we

understand a map M as an edge coloured cubic graph GM, to which we refer as the flag

graph of the map M; this is defined in the following subsection.

2.1.1 Flag graph

Let BS(M) be the barycentric subdivision of a map M, where each face of M is

decomposed into triangles with a vertex in common (see Figure 2.3). In fact, BS(M) is

a map with triangular faces in the same surface as M. For each triangle Φ in BS(M)

we label its vertices by Φ0, Φ1 and Φ2 according to whether they represent a vertex, an

edge or a face (mutually incident) in the map M. Note that each triangle of BS(M) is

adjacent to other three triangles. If two triangles Φ and Ψ of BS are adjacent by the edge

with vertices Φj and Φk, with j, k ∈ {0, 1, 2} and j 6= k, then we say that Φ and Ψ are

i-adjacent, for i ∈ {0, 1, 2} and i 6= j, k. In this case we shall denote Ψ by Φi (likewise Φ

by Ψi) and note that for every triangle Φ and i ∈ {0, 1, 2}, (Φi)i = Φ.

Hence, a (non-degenerated) map M can be seen as a set F(M) of flags, and the

relation between pairs of elements in F(M) in the following way. A flag of M is an

ordered triple of a vertex, an edge and a face mutually incident in M. One can identify

a flag (Φ0,Φ1,Φ2) of the map M with the triangle Φ in BS(M), where the flag assigned

to the triangle Φi shares the elements Φj and Φk in the triple (Φ0,Φ1,Φ2), but differs

in the third element Φi, with j, k ∈ {0, 1, 2} and j 6= k, for i ∈ {0, 1, 2} and i 6= j, k.

In other words, the set of flags of a map M is in direct correspondence with the set of

triangular faces of the barycentric subdivision BS(M). Moreover, denote by Φ0, Φ1 and

Φ

Φ2

Φ1
Φ0

Figure 2.3: Barycentric subdivision of M and the flag Φ = (Φ0,Φ1,Φ2) ∈ F(M).

Φ2 the corresponding adjacent flags of Φ inM, and extend this notation by induction in

the following way

(Φi0,i1,...,ik−1)ik = Φi0,i1,...,ik−1,ik .
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Note that Φi,i = Φ for i = 0, 1, 2 and that Φ0,2 = Φ2,0, for every flag Φ in F(M). Moreover,

the connectivity of the underlying graph of M implies that given any two flags Φ and Ψ

of M, there exist integers i0, i1, . . . , ik ∈ {0, 1, 2} such that Ψ = Φi0,i1,...,ik .

For each flag of M (face of BS(M)) we assign a vertex, and define an edge between

two of them whenever the corresponding flags are adjacent (see Figure 2.4). We can

0

1

2
Φ

Φ1

Φ0

Φ2

Figure 2.4: Local representation of the flag graph GM of a map M.

naturally colour the edges of this new graph with colours 0, 1, 2 in such a way that the

edge between any two i-adjacent flags has colour i. The obtained 3-edge-coloured graph

is called the flag graph GM ofM. (Note that this cubic graph with the vertex set F(M)

defines the dual of the barycentric subdivision BS(M), in the sense of Section 4.1.)

Observe that the edges of a given colour form a perfect matching (an independent

set of edges containing all the vertices of the graph) in GM. Hence the union of two sets

of edges of different colours is a subgraph whose connected components are even cycles.

Such subgraph is called a 2-factor of GM. Since Φ0,2 = Φ2,0, we note that the 2-factor of

GM with edges of colours 0 and 2 consists of 4-cycles.

A map M is said to be orientable if its underlying surface is orientable. It is not

difficult to see that M is orientable if and only if its flag graph GM is bipartite, [25].

An automorphism of GM is a bijection of the vertices of GM that preserves the in-

cidences of the graph; the set of all automorphisms of GM is the automorphism group

Aut(GM) of GM. There are two interesting subgroups of Aut(GM) associated with the

graph GM: the colour respecting automorphism group Autr(GM), consisting of all auto-

morphisms of GM that induce a permutation of the colours of the edges, and the colour

preserving automorphism group Autp(GM), consisting of all automorphisms of GM that

send two adjacent vertices by colour i into other two adjacent by the same colour i.

Clearly Autp(GM) ≤ Autr(GM) ≤ Aut(GM).
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2.1.2 Monodromy group

To each mapM we can associate a subgroup of the permutation group of the flags ofM
in the following way. Let s0, s1, s2 be permutations in the symmetric group Sym(F(M)),

acting on the right, such that for any flag Φ ∈ F(M),

Φsi := Φ · si = Φi;

with i = 0, 1, 2. These permutations generate a group Mon(M), called the monodromy

(or connection) group of the map M ([32]). Observe that if Ψ ∈ F(M) is such that

Ψ = Φi0,i1,...,ik , then

Ψsik+1 = (Φi0,i1,...,ik)sik+1 = Φi0,i1,...,ik,ik+1 ,

with i0, i1, . . . , ik, ik+1 ∈ {0, 1, 2}. Recall that for every flag Φ ∈ F(M), Φi,i = Φ and that

Φ0,2 = Φ2,0. Given a non-degenerated map, a triangle Φ of the barycentric subdivision is

different to its adjacent triangles , then the distinguished generators s0, s1, s2 of Mon(M)

are fix-point free involutions. Moreover, the product s0s2 = s2s0 is also fix-point free as

each edge of a map is always contained in four different flags and s0s2 always sends the

flag Φ := (Φ0,Φ1,Φ2) to the unique flag Ψ that shares with Φ the element Φ1, but differs

in the other two elements. Furthermore, the connectivity of the map implies that the

action of the group Mon(M) is transitive on F(M).

Observe that the distinguished generators s0, s1, s2 of Mon(M) label the coloured

edges of the flag graph GM in a natural way. That is, each edge of colour i is labelled

with the generator si. In this way, one can think of the walks among the edges of GM as

words in Mon(M). In fact, if Φ,Ψ ∈ F(M) are two flags such that Ψ = Φw, for some

w = si0si1 . . . sik ∈ Mon(M), then the walk of GM starting at the vertex Φ and travelling

in order among the edges i0, i1, . . . , ik will finish at the vertex Ψ. And vice versa, every

walk among the coloured edges of GM starting at Φ and finishing at Ψ induces a word

w ∈ Mon(M) that satisfies that Φw = Ψ. Note however that in general the action of

Mon(M) is not semi-regular on F(M), implying that one can have differently “coloured”

walks in GM going from Φ to Ψ that induce different words of Mon(M) (but act on the

flag Φ in the same way).

Since s0s2 = s2s0 is fixed-point free, the 4-cycles with edges of alternating colours 0

and 2 in GM define the set of edges on the map. In other words, the edges of M can

be identified with the orbits of F(M) under the action of the subgroup generated by the

involutions s0 and s2; that is,

E(M) = {Φ〈s0,s2〉 | Φ ∈ F(M)}.

Similarly, we find that the vertices and faces ofM are identified with the respective orbits

of the subgroups 〈s1, s2〉 and 〈s0, s1〉 on F(M). That is,

V (M) = {Φ〈s1,s2〉 | Φ ∈ F(M)} and F (M) = {Φ〈s0,s1〉 | Φ ∈ F(M)}.
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Thus, the group 〈s0, s1, s2〉 acts transitively on sets of vertices, edges and faces of M.

In particular, for each flag Φ ∈ F(M), the set (Φ)0 := {Φw | w ∈ 〈s1, s2〉} is the

orbit of the flag Φ around a vertex of M. Similarly, (Φ)1 := {Φw | w ∈ 〈s0, s2〉} and

(Φ)2 := {Φw | w ∈ 〈s0, s1〉} are the orbits of the flag Φ around an edge and a face of the

map M. The following lemma states that in fact, for each k, (Φ)k is precisely the set of

flags contained in the k-face of Φ, and hence we can identify the k-face of Φ with the set

(Φ)k.

Lemma 2.1. Let M be a map, F(M) its set of all flags and Mon(M) its monodromy

group. For each Φ ∈ F(M) and k ∈ {0, 1, 2}, let (Φ)k := {Φw | w ∈ 〈si, sj〉, i 6= j 6= k}.
If Φ,Ψ ∈ F(M) and k ∈ {0, 1, 2} are such that (Φ)k ∩ (Ψ)k 6= ∅, then (Φ)k = (Ψ)k.

Proof. If (Φ)k∩ (Ψ)k 6= ∅, then there exist w0, w1 ∈ 〈si, sj〉 such that Φw0 = Ψw1 . But for

any w ∈ 〈si, sj〉 we have that Φw = Φw0w
−1
0 w = Ψw1w

−1
0 w, and since w1w

−1
0 w ∈ 〈si, sj〉, then

Φw ∈ (Ψ)k, implying that (Φ)k ⊆ (Ψ)k. A similar argument shows the other contention.

A map is called equivelar if each of its faces has the same number p of edges and if

each of its vertices belongs to the same number q of edges, [41].

2.1.3 Automorphism group, and k-orbit maps

We shall say that a symmetry, or an automorphism, of a mapM is an automorphism

of its underlying graph that preserves the set of faces of the map. The set of all auto-

morphisms ofM forms a group, the automorphism group ofM, we denote this group as

Aut(M).

An automorphism α ∈ Aut(M) of the map M induces a permutation of the flags

in F(M) such that Φα := (Φ0α,Φ1α,Φ2α), with Φ ∈ F(M). Moreover, α ∈ Aut(M)

preserves the adjacencies between flags; that is, (Φα)i = Φiα, with Φ ∈ F(M). From

here it follows that

Φsiα = (Φα)si ,

for every flag Φ ∈ F(M) and i ∈ {0, 1, 2} [32]. Therefore, an automorphism of M is a

bijection of F(M) whose action commutes with the elements of Mon(M). Thus, Aut(M)

can be seen as a subgroup of Sym(F(M)) that preserves the coloured adjacencies; that

is, Aut(M) ∼= H ≤ Autp(GM). Conversely, for every γ ∈ Autp(GM), we have that two

vertices Φγ and Ψγ of GM are adjacent by an edge coloured i = 0, 1, 2 if and only if

Ψ = Φi, then it follows that Φiγ = Ψγ = (Φγ)i, hence γ induces an automorphism

of M. Then, an automorphism of a map M can be seen as an edge-colour preserving

automorphism of the flag graph GM. Therefore, Aut(M) ∼= Autp(GM).
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Let α ∈ Autp(GM) be such that Φα = Φ for some vertex Φ of GM. Since α preserves

the colours of the edges of GM, it must fix all the edges incident to Φ and hence all

neighbours of Φ. It is not difficult to see that, by the connectivity of the map, α fixes all

the vertices of GM, as well as all its edges and hence is the identity of Autp(GM). That

is, the action of the automorphism group Autp(GM) on the vertices of GM is semi-regular

and therefore the action of Aut(M) is semi-regular on the flags of M.

Denote by Orb(M) := {OΦ|Φ ∈ F(M)}, the set of flag-orbits ofM under the action

of Aut(M). Given two orbits O1,O2 ∈ Orb(M) and a flag Φ ∈ O1, let Φ,Ψ ∈ O1 such

that Φv ∈ O2 for some v ∈ Mon(M). Then, there exists α ∈ Aut(M) such that Ψ = Φα.

Hence, Ψv = (Φα)v = Φvα. Thus, Φv,Ψv ∈ O2, and we obtain the following lemma.

Lemma 2.2. Let Φ ∈ F(M), O1,O2 ∈ Orb(M), and v ∈ Mon(M). If Φ ∈ O1 and

Φv ∈ O2, then Ψ ∈ O1 if and only if Ψv ∈ O2.

Let Φ ∈ F(M) be a base flag of M, and choose a word w = si0si1 · · · sin in Mon(M)

such that the flag Φw is in the same flag orbit as Φ. Then, there is an automorphism,

denoted by αw, in Aut(M) such that Φw = Φαw, we also denote αw as αi0,i1,...,in . Since

the action of Aut(M) is semi-regular on the set F(M), for u,w ∈ Mon(M) such that

there are automorphisms αu, αw ∈ Aut(M) of M, it follows that αu = αw if and only if

Φu = Φw, and hence wu−1 stabilizes the flag Φ ∈ F(M). Observe that for any x ∈ N :=

StabMon(M)(Φ), and w ∈ Mon(M) such that the automorphism αw exists, then

(Φw)xw
−1

= (Φαw)xw
−1

= (Φxαw)w
−1

= (Φαw)w
−1

= (Φw)w
−1

= Φ.

Therefore, w is an element in N , the normalizer of N under the action of Mon(M).

For w ∈ Mon(M), such that the automorphism αw exists, we can define a function

ϕ : Aut(M) → N /N , such that ϕ : αw 7→ Nw. Since N / N , it follows that ϕ(αuw) =

Nuw = NuNw = ϕ(αu)ϕ(αw), with u,w ∈ N . Recall that αu = αw if and only if

wu−1 ∈ N , implying that ϕ is a well-defined injective morphism. Furthermore, note that

for w, v ∈ N such that Nw 6= Nv, it follows that Φw 6= Φv, then the corresponding

automorphisms to w and v are different, i.e. αw 6= αv. Therefore, ϕ is also surjective.

Hence, the existence of the isomorphism ϕ implies that the automorphism group of M
can be seen as the set {αw|w ∈ N}.

For every v ∈ Mon(M) and Φ ∈ F(M) the action of Mon(M) on the set Orb(M)

is defined as OΦ · v = OΦv , where OΦ := {Φα|α ∈ Aut(M)}. This action is transitive,

as is the action of Mon(M) on F(M). Moreover, for w ∈ N it follows that OΦ · w =

OΦw = OΦ. Since the action of Aut(M) is semi-regular, the isomorphism ϕ induces a

bijection ϕ̄ : Aut(M)→ OΦ, such that ϕ̄ : αw 7→ Φw. This latter implies that there exist

a bijection between every two flag-orbits, i.e. all orbits have the same size. In fact, for

some w, u ∈ Mon(M), if Nw = Nu then wu−1 ∈ N and therefore αwu−1 ∈ Aut(M).
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Consequently we can see that |Orb(M)| = [Mon(M) : N ]. In particular, if the map is

finite, the size of each orbit equals |Aut(M)| and

|Orb(M)| = |F(M)|
|Aut(M)|

(see Proposition 3.6 of [32]).

We say that the mapM is a k-orbit map whenever the automorphism group Aut(M)

has exactly k orbits on F(M). Furthermore, if k = 1 (i.e. the action of Aut(M) is

transitive on the flags), then we say that M is a regular map. The 2-orbit maps were

widely studied and classified (in different contexts) in [23] and [29]. From [30] we can

deduce a complete characterization of the automorphism groups of 2-orbit and fully-

transitive maps (i.e. transitive on vertices, edges and faces) in terms of distinguished

generators. The most studied and understood type of 2-orbit maps is the chiral one. A

chiral map is a 2-orbit map with the property that every flag of the map and its adjacent

flags are in different orbits.

In 1997 , Graver and Watkins, [26], first studied edge-transitive maps, and showed that

there are 14 types of edge-transitive maps: regulars, six 2-orbit and seven 4-orbit types of

maps. In 2001, Tucker, Watkins, and Širáň, found that there exists a map for each type,

[53]. Orbanić, in his PhD thesis, [43], study edge-transitive maps through the theory of

F -maps and from a computational point of view. More recently, Orbanić, Pellicer, and

Weiss extended the study of k-orbit maps and classified them up to k ≤ 4, [45].

2.2 Maniplexes

In 2012, Wilson introduced the concept of maniplex, [56], aiming to unify the notion

of maps and abstract polytopes, we refer the reader to [40] for the basic theory of abstract

polytopes. Even though in this work we do not define abstract polytopes, it is not hard to

verify that everything that we show for maniplexes can be applied for (the flag graph of)

abstract polytopes, as is shown in [10]. The combinatorial structure of (n−1)-maniplexes

is completely determined by an edge-coloured n-valent graph with chromatic index n, often

called the flag graph. In particular, non-degenerated maps correspond to 2-maniplexes.

Given a set of flags F and a sequence of matchings (s0, s1, . . . , sn−1), such that each si
partitions the set F into sets of size 2 and the partitions defined by si and sj are disjoint

when i 6= j, we can define an (n − 1)-complex M, as Wilson does in [56]: a connected

graph GM, whose vertex set is F , and with edges of colour i corresponding to the matching

induced by si. Note that each si can be thought as a permutation of F , sending each

Φ ∈ F to the unique element Φi ∈ F such that {Φ,Φi} is an edge of colour i. Hence as

permutations, all the si are involutions. Furthermore, by definition Φ 6= Φi implying that
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the si are point free. Thus, we say that two flags Φ and Ψ are i-adjacent if Φsi = Ψ (note

that si is an involution, and Φsi = Ψ implies that Ψsi = Φ, so the concept is symmetric).

In fact, an (n−1)-complex is defined similarly as to what Vince calls a combinatorial map

in [54].

An (n − 1)-maniplex M is an (n − 1)-complex such that for any two permutations

si and sj such that |i − j| ≥ 2, it follows that sisj = sjsi. given a flag Φ of M and

i, j ∈ {0, . . . , n} such that |i− j| ≥ 2, we have that the action of si, sj ∈ Mon(M) on the

set F(M) implies that

Φi,j = Φsisj = Φsjsi = Φj,i.

Similarly as we saw with maps, we can verify that sisj does not have fix points, as sisj
always sends any flag Φ to the unique flag Φi,j = Φj,i that shares with Φ all its elements

but Φi and Φj.

By definition, the edges of GM of one given colour form a perfect matching. The 2-

factors of the graph GM are the subgraphs spanned by the edges of two different colours

of edges. In particular, the connected components in GM of the induced subgraph with

edges of colours i and j, with |i − j| ≥ 2, are disjoint 4-cyles. The set of i-faces of an

(n − 1)-maniplex M is defined by the connected components of the induced subgraph

with edges of colours j ∈ {0, 1, . . . , n− 1} \ {i} in GM. A 0-face is a vertex, a 1-face is an

edge and an (n− 1)-face is a facet. We shall refer to (n− 1) as the rank of the maniplex.

A 0-complex is a 0-maniplex, whose graph has exactly one edge of colour 0 connecting

exactly two vertices (flags), as it is depicted in the left of Figure 2.5. Each of its flags is

both vertex and facet. A 1-maniplex corresponds to an l-gon, whose graph has 2l vertices

0

0

0

0

0

1

1

1

1

Figure 2.5: The 0-maniplex (left) and the 1-maniplex regarded geometrically as a 4-gon (right).

and two matchings of l edges each coloured by 0 and 1, respectively. The 0- and 1-faces

of a 1-maniplex are edges of the graph. Hence, the 1-maniplex has l vertices and l edges.

For instance, in the right of Figure 2.5 is depicted the 1-maniplex of a 4-gon.

In the graph GM of a 2-maniplexM, the faces, edges and vertices ofM are represented

by the (0, 1), (0, 2) and (1, 2) 2-factors, respectively; where only the (0,2) 2-factor is

composed of 4-cycles, since s0s2 = s2s0. In fact, a 2-maniplex can be considered as a map
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and vice versa. In particular, a map that has no faces with a single edge nor a vertex of

degree one is a 2-maniplex, so that maniplexes generalize the notion of maps to higher

rank.

Given an (n − 1)-maniplex M, to each i-face F of M, we can associate an (i − 1)-

maniplex MF by identifying two flags of F whenever there is a path between them

consisting of edges with colours in {i + 1, . . . , n}, where multiple edges with the same

colour must be identified. Equivalently, we can remove from GM all edges of colours

{i+ 1, . . . , n− 1}, and then take one of the connected components.

Abusing of the notation, we say that the monodromy group Mon(M) is the group

generated by s0, . . . , sn−1, seen as permutations of F . In this way, the action of Mon(M)

on F is faithful and transitive.

The set of i-faces of an (n−1)-maniplex corresponds to the orbit of the flags in F under

the action of the group generated by the set Si := {sj|i 6= j}, with i ∈ {0, 1, . . . , n − 1}.
Given an i-face F , if Φ ∈ F we shall denote F by (Φ)i. Hence, (Φ)i := {Φw|w ∈
〈Si〉}. It is then straightforward to see that (Φ)i ∩ (Ψ)i 6= ∅ if and only if (Φ)i = (Ψ)i.

Furthermore, an i-face F of M is an (i − 1)-maniplex MF whose monodromy group

corresponds to 〈s0, . . . , si−1〉. Given that sisj = sjsi in Mon(M), whenever |i − j| ≥ 2.

Then, 〈s0, . . . , si−1〉 commutes with 〈si+1, . . . , sn〉.

2.2.1 Automorphism group

An automorphism α of an (n − 1)-maniplex M is a colour-preserving automorphism

of the graph GM. Hence, α can be seen as a permutation of the flags in F that commutes

with each of the permutations in the monodromy group. In a similar way as it happens

for maps, the connectivity of the graph GM implies that the action of the automorphism

group Aut(M) of M is semi-regular on the vertices of GM.

Note that Lemma 2.2, for maps, also holds for maniplexes. Then we have the following

lemma.

Lemma 2.3. For any two flags Φ,Ψ ∈ F(M) that are in the same flag-orbit O1, if the

flag Φv is in a flag-orbit O2, then Ψv ∈ O2, with v ∈ Mon(M).

A flag Φ of M contained in an i-face F naturally induces a flag Φ in MF . Similarly,

if γ ∈ Aut(M) fixes F , then γ induces an automorphism γ ∈ Aut(MF ), defined by

Φγ := Φγ. To check that this is well-defined, suppose that Φ = Ψ; we want to show

that Φγ = Ψγ. Since Φ = Ψ, it follows that Ψ = Φw for some w ∈ 〈si+1, . . . , sn〉. Then

Ψγ = (Φw)γ = (Φγ)w, so that Ψγ = Φγ.

We say that a maniplex M is i-face-transitive if Aut(M) is transitive on the faces of

rank i. We say thatM is fully-transitive if it is i-face-transitive for every i = 0, . . . , n−1.
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If Aut(M) has k orbits on the flags of M, we say that M is a k-orbit maniplex. A

1-orbit maniplex is also called a reflexible maniplex. A 2-orbit maniplex with adjacent

flags belonging to different orbits is a chiral maniplex. If a maniplex has at most 2 orbits

of flags and GM is a bipartite graph, such that each part is contained in an orbit, then

the maniplex is said to be rotary.

As it was pointed out in Chapter 1, the graph GM of an (n−1)-maniplexM can be seen

as a Schreier coset graph. That is, considering a base flag Φ ∈ F and its stabilizer, N :=

StabMon(M)(Φ), under the action of the monodromy group, Mon(M) := 〈s0, . . . , sn−1〉, of

M. The right cosets Nu represent the vertices of GM and two vertices Nu and Nv are

joined by a coloured edge i = 0, . . . , n− 1 whenever Nu = Nvsi for any u, v ∈ Mon(M).





Chapter 3

Symmetry type graph

As we pointed out in Chapter 2, the aim of this work is to give a classification on the

symmetry types of maps and maniplexes. In this chapter we define and give properties

of an n-valent edge-coloured graph, that we call the symmetry type graph of an (n− 1)-

maniplex, n ≤ 3. Given a map (or maniplex) M, we use the symmetry type graph as a

tool to determine properties and information regarding the symmetries ofM. Such graph

is basically the quotient graph of the flag graph GM of M, obtained from the action of

the group of automorphisms of M on the flags. Therefore, we consider pre-graphs; that

is, graphs that allow multiple edges and semi-edges. The notion of symmetry type graph

is equivalent to the Delaney-Dress symbol described in [21].

Given a graph G, and a partition B of its vertex set V , the quotient with respect to B,

GB, is defined as a pre-graph with vertex set B, such that for any two vertices B,C ∈ B,

there is an edge from B to C if and only if there exists u ∈ B and v ∈ C such that

there is an edge from u to v. Edges between vertices in the same part of the partition B
quotient into semi-edges (edges with exactly one end point). Note that a quotient of an

edge-coloured graph need not be an edge coloured graph.

3.1 Symmetry type graphs of maps and maniplexes

In this section, maps will be regarded as 2-maniplexes. Let GM be the (n-edge-

coloured) flag graph of a k-orbit (n−1)-maniplexM, and Orb(M) := {OΦ | Φ ∈ F(M)}
the set of all the orbits of F(M) under the action of the automorphism group Aut(M)

of M.

We define the symmetry type graph T (M) of the maniplex M to be the coloured

factor pre-graph of GM with respect to Orb(M). That is, the vertex set of T (M) is the

set of orbits Orb(M) of the flags of M under the action of Aut(M), and given two flag

orbits OΦ and OΨ, there is an edge of colour i between them if and only if there exists

27
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flags Φ′ ∈ OΦ and Ψ′ ∈ OΨ such that Φ′ and Ψ′ are i-adjacent in M. Edges between

vertices in the same orbit shall factor into semi-edges. Because of Lemma 2.3 the colours

of the edges of GM induce colours on the edges of T (M), implying that T (M) is an

edge-coloured graph.

The simplest symmetry type graph arises from regular maps. In fact, the symmetry

type graph of a reflexible (n − 1)-maniplex has only one vertex and n semi-edges, one

of each colour 0, 1, . . . , n − 1. Recall that the edges of M are represented by 4-cycles of

alternating colours i and j in GM, for |i − j| ≥ 2. Each of these 4-cycles should then

factor into one of the five pre-graphs in Figure 3.1.

i

j j
j

j

j j

j
i

i i

i

i

i

Figure 3.1: Possible quotients of (i, j) coloured 4-cycles, |i− j| ≥ 2.

Clearly, if M is a k-orbit maniplex, then T (M) has exactly k vertices. Thus, the

number of types of k-orbit maniplexes depends on the number of n-valent pre-graphs

on k vertices that can be properly edge coloured with n colours and that the connected

components of the 2-factor with colours i and j, with |i−j| ≥ 2 are always as in Figure 3.1.

Given vertices u, v of T (M), if there is an i-edge joining them, with i ∈ {0, 1, . . . , n− 1},
we shall denote such edge as (u, v)i. Similarly, (v, v)i shall denote the semi-edge of colour

i incident to the vertex v. In light of the above observations we state the following lemma.

Lemma 3.1. Let T (M) be the symmetry type graph of a maniplex. If there are three

vertices u, v, w ∈ V (T (M)) such that (u, v)i, (v, w)j ∈ E(T (M)) with |i − j| ≥ 2, then

the connected component of the (i, j) 2-factor that contains v has four vertices.

It is then straightforward to see that there are exactly seven types of 2-orbit 2-

maniplexes, shown in Figure 3.2. (The relations between some of these types, as shown

in the figures, will be discuss in Subsections 4.1.1 and 4.2.1.) These seven types of 2-orbit

2-maniplexes have been widely studied in different contexts, see for example [23] and [29];

we follow [29] for the notation of the types of the symmetry type 2-maniplexes with two

flag orbits. It is likewise straightforward to see that there are only three types of 3-orbit

2-maniplexes, and these are shown in Figure 3.3.

In [45], Orbanić, Pellicer, and Weiss studied all the types of k-orbit 2-maniplexes, in

the context of maps, for k ≤ 4. For symmetry type graphs of 2-maniplexes of three and

four orbits, we follow the notation of [45].

Recall that the action of Mon(M) on the set Orb(M) is defined as OΦ · v = OΦv ,

and it is a transitive action, as the one of Mon(M) on F(M) is transitive. The action
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Figure 3.2: The seven symmetry type graphs of 2-orbit maps.
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Figure 3.3: The three symmetry type graphs of 3-orbit maps.
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of Mon(M) on Orb(M) can be easily seen on the symmetry type graph T (M). In fact,

in the same way as the words of Mon(M) can be seen as walks among the edges of GM,

they can be seen as walks among the edges of T (M). This immediately implies that, as

Mon(M) acts transitively on Orb(M), the symmetry type graph T (M) is connected. A

walk on T (M) that starts at a vertex OΦ and finishes at a vertex OΨ corresponds to an

element of Mon(M) that sends all the flags in the orbit OΦ to flags in the orbit OΨ. We

can further see that a closed walk among the edges of T (M) that starts and finishes at

a vertex OΦ corresponds to an element of Mon(M) that permutes the flags of the orbit

OΦ.

Given I ⊂ {0, 1, . . . , n}, we say that an I-walk in T (M) (or in GM) is a walk along

edges of T (M) (resp. GM) of colours in I. The following lemma shall help us to understand

the orbits of the k-faces of a map M, in terms of the symmetry type graph of M.

Lemma 3.2. Let M be a map with symmetry type graph T (M). For any two flags Φ

and Ψ of M, there is a {0, 1, . . . , n} \ {i}-walk in T (M) between the vertices OΦ and OΨ

of T (M) if and only if (Φ)i and (Ψ)i are in the same orbit of i-faces under the action of

Aut(M).

Proof. Let I := {0, 1, . . . , n} \ {i}. Suppose there is an I-walk in T (M) between the

vertices OΦ and OΨ, and let w ∈ 〈sj|j 6= i〉 be the associated element of Mon(M)

corresponding to such walk. Then Φw ∈ OΨ; that is, there exists α ∈ Aut(M) such

that Φwα = Ψ. Now, by definition, (Φα)w ∈ (Φα)i. On the other hand, as the action of

Mon(M) commutes with the action of Aut(M), then (Φα)w = (Φw)α ∈ (Φwα)i = (Φw)iα.

That is, Ψ ∈ (Φα)i∩(Φwα)i. By Lemma 2.1 we then have that (Φα)i = (Φwα)i = (Φw)iα.

Hence, (Φα)i and (Φw)i are in the same orbit of i-faces under Aut(M). Moreover, (Φα)i =

(Φ)iα implies that (Φα)i and (Φ)i belong to the same orbit under Aut(M). We therefore

can conclude that (Φ)i and (Ψ)i = (Φwα)i are in the same orbit of i-faces under the action

of Aut(M).

For the converse, let α ∈ Aut(M) be such that (Φ)iα = (Ψ)i. That is, {Φw | w ∈
〈sj|j 6= i 〉}α = {Ψu | u ∈ 〈sj|j 6= i 〉}. Hence, there exists w ∈ 〈sj|j 6= i 〉 such that

Φwα = Ψ. Now,

OΦ · w = OΦw = OΦwα = OΨ.

Therefore w ∈ 〈sj|j 6= i 〉 induces an I-walk in T (M) starting at OΦ and finishing at OΨ.

The following theorem is an immediate consequence of the above Lemma.

Theorem 3.1. LetM be an (n−1)-maniplex with symmetry type graph T (M). Then, the

number of connected components in the (n− 1)-factor of T (M) of colours {0, 1, . . . , n−
1} \ {i}, determine the number of orbits of i-faces of M, where i ∈ {0, 1, . . . , n− 1}.
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3.1.1 Symmetry type graphs of highly symmetric maniplexes

One can classify maniplexes with small number of flag orbits (under the action of

the automorphism group of the maniplex) in terms of their symmetry type graphs. The

number of distinct possible symmetry types of a k-orbit (n− 1)-maniplex is the number

of connected n-valent pre-graphs on k vertices, that can be edge-coloured with exactly

n colours and that the connected components of the 2-factors with colours i and j are

always as in Figure 3.1, with |i− j| ≥ 2. Furthermore, given a symmetry type graph, one

can read from the appropriate coloured subgraphs the different types of face transitivities

that the maniplex has.

As pointed out before, the symmetry type graph of a reflexible (n−1)-maniplex consists

of one vertex and n semi-edges. The classification of two-orbit maniplexes in terms of

the local configuration of their flags follows immediately from the possible symmetry type

graphs. In fact, for each n, there are 2n−1 possible symmetry type graphs with 2 vertices

and n (semi-)edges, since given any proper subset I of the colours {0, 1, . . . , n− 1}, there

is a symmetry type graph with two vertices, |I| semi-edges corresponding to the colours of

I incident to each vertex, and where all the edges between the two vertices use the colours

not in I (see Figure 3.4). From [29], and thinking of an n-polytope as an (n−1)-maniplex

([56]), we can deduce that this symmetry type graph corresponds precisely to maniplexes

in class 2I .

I ⊂ {0, 1, . . . , n− 1}, J = {0, 1, . . . , n− 1} \ I

I IJ

Figure 3.4: The symmetry type graph of a maniplex in class 2I .

Highly symmetric maniplexes can be regarded as those with few flag orbits or those

with many face transitivities. In particular, it follows from Theorem 3.1, that an edge-

transitive 2-maniplex M has a symmetry type graph T (M) with only one connected

component of the 2-factor of colours 0 and 2, as those in Figure 3.1, with i, j ∈ {0, 2}.
Then T (M) has either 1, 2, or 4 vertices. It is immediate to see that an edge transitive

2-maniplex is a 1-, 2-, or 4-orbit 2-maniplex (see [26]).

The classification of symmetry type graphs of 3-orbit 2-maniplexes (see Figure 3.3),

together with Theorem 3.1 imply the following result.

Corollary 3.1. Every 3-orbit map has exactly two orbits of edges.
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As pointed out in [45], there are 22 types of 4-orbit 2-maniplexes. The 7 edge-transitive

ones are shown in Figure 3.5, while the 15 that are not edge-transitive are depicted in

4Gd

4F

4G

4H

4Gp

4Hd 4Hp

D P

self-dual

self-petrie

self-dualself-petrie

D P

self-dualself-petrie

Figure 3.5: The seven symmetry type graphs of edge-transitive 4-orbit maps.

Figure 3.6.

Using the twenty two symmetry type graphs of 4-orbit 2-maniplexes, and the structure

of the 2-factors of colours 0 and 2, one can see that there are thirteen different types of

5-orbit 2-maniplexes. Their symmetry type graphs are shown in Figure 3.7.

In this section we classify the possible symmetry type graphs with 3 vertices and

study some properties of symmetry type graphs of 4-orbit maniplexes and fully-transitive

3-maniplexes.
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Figure 3.6: The fifteen symmetry type graphs of 4-orbit maps that are not edge-transitive.
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5Bd 5B 5Bp

5Cd 5C 5Cp

5Dd 5D 5Dp
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self-dualself-petrie

self-petrie
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Figure 3.7: The thirteen symmetry type graphs of 5-orbit maps.
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On symmetry type graphs of 3-orbit maniplexes

In this subsection, we count all possible symmetry type graphs of 3-orbit maniplexes

and enunciate results regarding the transitivity on their j-faces.

Proposition 3.1. There are exactly 2n − 3 different possible symmetry type graphs of

3-orbit maniplexes of rank n− 1.

Proof. LetM be a 3-orbit (n− 1)-maniplex and T (M) its symmetry type graph. Then,

T (M) is an n-valent well edge-coloured graph with vertices v1, v2 and v3. Recall that the

set of colours {0, 1, . . . , n− 1} correspond to the distinguished generators s0, s1, . . . , sn−1

of the monodromy group of M, and that by (u, v)i we mean the edge between vertices u

and v of colour i.

Since T (M) is a connected graph, without loss of generality, we can suppose that there

is at least one edge joining v1 and v2 and another joining v2 and v3. Let j, k ∈ {0, 1, . . . , n−
1} be the colours of these edges, respectively. That is, without loss of generality we may

assume that (v1, v2)j and (v2, v3)k are edges of T (M). By Lemma 3.1, we must have

that k = j ± 1, as otherwise T (M) would have to have at least 4 vertices. This implies

that, up to graph isomorphism, the only edges of T (M) are either (v1, v2)j and (v2, v3)j+1,

(v1, v2)j and (v2, v3)j−1 or (v1, v2)j, (v2, v3)j+1 and (v2, v3)j−1, with j ∈ {1, 2, . . . , n − 2}.
(See Figure 3.8).

J J
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J J
J

j + 1j

J
J

j

j + 1

j − 1

J

j + 1

j − 1
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u v w

Figure 3.8: Possible symmetry type graphs of 3-orbit (n − 1)-maniplexes with edges of colours
j − 1, j, and j + 1, with j ∈ {1, 2, . . . , n− 2}.

Here there are n− 1 such graphs with exactly two edges and n− 2 such graphs with

three edges. Therefore, there are 2n−3 possible different symmetry type graphs of 3-orbit

maniplexes of rank n− 1.

Given a 3-orbit (n − 1)-maniplex M with symmetry type graph having exactly two
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edges e and e′ of colours j and j + 1, respectively, for some j ∈ {0, . . . , n − 2}, we

shall say that M is in class 3j,j+1. If, on the other hand, the symmetry type graph

of M has one edge of colour j and parallel edges of colours j − 1 and j + 1, for some

j ∈ {1, . . . , n− 2}, then we say that M is in class 3j. From Figure 3.8 we observe that a

maniplex in class 3j,j+1 is i-face-transitive whenever i 6= j, j+ 1, while a maniplex in class

3j if i-face-transitive for every i 6= j. (Note that this notation holds for n ≤ 3, in case of

2-maniplexes we follow the notation in [45].) From here, we have the following result.

Proposition 3.2. A 3-orbit maniplex is j-face-transitive if and only if it does not belong

to any of the classes 3j, 3j,j+1 or 3j−1,j.

Theorem 3.2. There are no fully-transitive 3-orbit maniplexes.

On symmetry type graph of 4-orbit maniplexes

It does not take long to realise that counting the number of possible symmetry type

graphs with k ≥ 4 vertices, and perhaps classifying them in a similar fashion as was done

for 2 and 3 vertices, becomes considerably more difficult. In this section, we shall analyse

symmetry type graphs with 4 vertices and determine how far a 4-orbit maniplex can be

from being fully-transitive. The proof of Lemma 3.3 is straight-froward from the fact that

by taking away the i-edges of a symmetry type graph T (M), the resulting T i(M) cannot

have too many components.

Lemma 3.3. Let M be a 4-orbit (n − 1)-maniplex and let i ∈ {0, . . . , n − 1}. Then M
has one, two or three orbits of i-faces.

If an (n−1)-maniplexM is not fully-transitive, there exists at least one i ∈ {0, . . . , n−
1} such that T i(M) is disconnected. We shall divide the analysis of the types in three

parts: when T i(M) has three connected components (two of them of one vertex and one

with two vertices), when T i(M) has a connected component with one vertex and another

connected component with three vertices, and finally when T i(M) has two connected

components with two vertices each. Let v1, v2, v3, v4 be the vertices of T (M).

Suppose that T i(M) has three connected components with v2 and v3 in the same

component. Without loss of generality we may assume that T (M) has edges (v1, v2)i and

(v3, v4)i. Let k ∈ {0, 1, . . . , n− 1} \ {i} be the colour of an edge between v2 and v3. Since

there is no edge of T (M) between v1 and v4, Lemma 3.1 implies that there are at most

two such possible k, namely k = i − 1 and k = i + 1. If i /∈ {0, n − 1}, T (M) can have

either both edges or exactly one of them, while if i ∈ {0, n− 1} there is one possible edge

(see Figure 3.9).

Let us now assume that T i(M) has two connected components, one consisting of the

vertex v1 and the other one containing vertices v2, v3 and v4. This means that the i-edge
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Figure 3.9: Symmetry type graphs of an (n− 1)-maniplex M with four orbits on its flags, and
three orbits on its i-faces.

incident to v1 is the unique edge that connects this vertex with the rest of the graph

and, without loss of generality, T (M) has the edge (v1, v2)i. As with the previous case,

Lemma 3.1 implies that an edge between v2 and v3 has colour either i− 1 or i+ 1.

First observe that having either (v2, v3)i−1 or (v2, v3)i+1 in T (M) immediately implies

(by Lemma 3.1) that there is no edge between v2 and v4. Now, if both edges (v2, v3)i−1

and (v2, v3)i+1 are in T (M), then the only edge between v3 and v4 would have to have

colour i, contradicting the fact that T i(M) has two connected components. Hence, there

is exactly one edge between v2 and v3. It is now straightforward to see that T (M) should

be one of the graphs in Figure 3.10, implying that there are four possible symmetry type

graphs with these conditions for each i 6= 0, 1, n− 2, n− 1, but only two symmetry type

graph of this kind when i = 0, 1, n− 2, or n− 1.
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Figure 3.10: Symmetry type graphs of (n− 1)-maniplexes with four orbits on its flags, and two
orbits on its i-faces such that one contains three flag orbits and the other contains
a single flag orbit.

It is straightforward to see from Figure 3.10 that the next lemma follows.

Lemma 3.4. Let M be a 4-orbit (n − 1)-maniplex with two orbits of i-faces such that

T i(M) has a connected component consisting of one vertex, and another one consisting

of three vertices. Then either T i−1(M) or T i+1(M) has two connected components, each

with two vertices.
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Finally, we turn our attention to the case where T i(M) has two connected components,

with two vertices each. Suppose that v1 and v2 belong to one component, while v3 and v4

belong to the other. As the two components must be connected by edges of colour i, we

may assume that (v1, v3)i is an edge of T (M). If the vertices v2 and v4 have semi-edges of

colour i, Lemma 3.1 implies that T (M) is one of the graphs shown in Figure 3.11. Note

that if i ∈ {0, n− 1} there is one possible symmetry type graph for this particular case.

i+ 1

i

i

i

i− 1

i− 1

i+ 1

i+ 1

i

i

i

i− 1

i+ 1

i− 1 i− 1

i+ 1

i

i− 1

i− 1

i+ 1 i+ 1

i

i

i

i− 1

i+ 1

i

i

i

i+ 1

i+ 1

i− 1 i− 1

i

i− 1

i+ 1 i+ 1

i

i

i

i

i

i

i

i

i− 1 i− 1

i− 1 i− 1

i− 1

i+ 1 i+ 1 i+ 1 i+ 1

J = {0, 1, . . . , n− 1} \ {i− 1, i, 1 + 1},

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

Figure 3.11: Six of the symmetry type graphs of (n− 1)-maniplexs with four orbits on its flags,
and two orbits on its i-faces such that each contains two flag orbits.

On the other hand, if (v1, v3)i and (v2, v4)i are both edges of T (M), given j ∈
{0, 1, . . . , n − 1} \ {i − 1, i, i + 1}, we use again Lemma 3.1 to see that (v1, v2)j is an

edge of T (M) if and only if (v3, v4)j is also an edge of T (M). By contrast, T (M) can

have either four semi-edges, an edge and two semi-edges, or two edges of colour i ± 1

(each joining the vertices of each connected component of T i(M)). Hence, if i 6= 0, n− 1,

for each J ⊂ {0, 1, . . . , n − 1} \ {i − 1, i, i + 1} there are ten possible symmetry type

graphs with four semi-edges of each of the colours in J and edges of colours not in J , as

shown in Figures 3.12 and 3.13, while for J = {0, 1, . . . , n − 1} \ {i − 1, i, i + 1} there

are six such graphs (shown in Figure 3.13). On the other hand if i ∈ {0, n− 1}, for each

J ⊂ {0, 1, . . . , n− 1} \ {i− 1, i, i + 1} there are two graphs as in Figure 3.12 and one as

in Figure 3.13, while for J = {0, 1, . . . , n − 1} \ {i − 1, i, i + 1}, there is only one of the

graphs in Figure 3.13.

Theorem 3.3 summarizes our analysis of the transitivity of 4-orbit maniplexes. In

particular, case one holds if and only if T (M) does not belong to any of the Figures 3.9

to 3.13. Moreover, case two holds if and only if T (M) is as any of the possible symmetry

type graphs in Figures 3.12 and 3.13, whenever J ⊂ {0, 1, . . . , n − 1} \ {i − 1, i, i + 1}.
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Figure 3.12: Four families of possible symmetry type graphs of (n − 1)-maniplexes with four
orbits on its flags, and two orbits on its i-faces such that each contains two flag
orbits.
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Similarly, case three holds if and only if T (M) is as those possible symmetry type graphs

in Figure 3.10 with parallel edges coloured by i and i± 2. Finally, case four holds if and

only if T (M) is as any of the possible symmetry type graphs in Figures 3.9, 3.11 and

Figure 3.13, even for J = {0, 1, . . . , n− 1} \ {i− 1, i, i+ 1}.

Theorem 3.3. Let M be a 4-orbit maniplex. Then, one of the following holds.

1. M is fully-transitive.

2. There exists i ∈ {0, . . . , n− 1} such that M is j-face-transitive for all j 6= i.

3. There exist i, k ∈ {0, . . . , n − 1}, i 6= k, such that M is j-face-transitive for all

j 6= i, k.

4. There exists i ∈ {0, . . . , n− 1} such that M is j-face-transitive for all j 6= i, i± 1.

3.1.2 On fully-transitive n-maniplexes for small n.

Every 1-maniplex is reflexible and hence fully-transitive. Fully-transitive 2-maniplexes

correspond to fully-transitive maps. From the symmetry type graph is easy to see that if

a map is edge-transitive, then it should have one, two or four orbits of flags. Moreover,

a fully-transitive map should be regular, a two-orbit map in class 2, 20, 21 or 22, or a

four-orbit map in class 4Gp or 4Hp.

When considering fully-transitive n-maniplexes, n ≥ 3, the analysis becomes con-

siderably more complicated. In [29] Hubard shows that there are 2n+1 − n − 2 classes

of fully-transitive two-orbit n-maniplexes. By Theorem 3.2, there are no 3-orbit fully-

transitive n-maniplexes. Extending the twenty-two possible symmetry type graphs of

4-orbit 2-maniplexes by adding (semi-) edges of colour 3 in such way that the (0, 3) and

(1, 3) 2-factors are as in Figure 3.1. There are twenty possible symmetry type graphs of

4-orbit 3-maniplexes that are fully transitive, these graphs are depicted in Figure 3.14.

Theorem 3.4. LetM be a fully-transitive 3-maniplex and let T (M) be its symmetry type

graph. Then either M is reflexible or T (M) has an even number of vertices.

Proof. On the contrary suppose that T (M) has an odd number of vertices, different than

1. Whenever |i − j| > 1, the connected components of the (i, j) 2-factor of a symmetry

type graph are as in Figure 3.1. Hence, there is a connected component of the (0, 2)

2-factor of T (M) with exactly one vertex v (and, hence, semi-edges of colours 0 and 2).

The connectivity of T (M) implies that there is a vertex v1 adjacent to v in T (M).

If v1 is the only neighbour of v, then T (M) has the edges (v, v1)1 and (v, v1)3 as

otherwiseM is not fully-transitive. Since the connected components of the (0, 3) 2-factor
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3210

Figure 3.14: Symmetry type graphs of 4-orbit fully-transitive 3-maniplexes
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of T (M) are as in Figure 3.1, v1 has a 0 coloured semi-edge. Because T (M) has more than

two vertices, the edge of v1 of colour 2 joins v1 to another vertex, say u. But removing

the edge (v1, u)2 disconnects the graph, contradicting the fact thatM is 2-face-transitive.

On the other hand, if v has more than one neighbour it has exactly two, say v1 and

u, and T (M) has the two edges (v, v1)1 and (v, u)3. This implies that the connected

component of the (1, 3) 2-factor containing v has four vertices: v, v1, u and v2. (Therefore

(v1, v2)3 and (u, v2)1 are edges of T (M).) Using the (0, 3) 2-factor one sees that u has a

semi-edge of colour 0.

Now, if (v1, v2)0 is an edge of T (M) or there are semi-edges coloured 0 at v1 and v2,

then the vertices v, v1, v2 and u are joined to the rest of T (M) only by the edges of colour

2, implying that removing them disconnects T (M) (there exists at least another vertex

in T (M) since it has an odd number of vertices), which is again a contradiction. On the

other hand, if v1 (or v2) has an edge of colour 0 to a vertex v3 then, by Lemma 3.1 v2 (or

v1) has a 0-edge to a vertex v4. Again, if (v3, v4)1 is an edge of T (M) or there are semi-

edges coloured 1 at v3 and v4, since the number of vertices of the graph is odd, removing

the edges of colour 2 will leave only the vertices u, v, v1, . . . , v4 in one component, which is

a contradiction. Proceeding now by induction on the number of vertices one can conclude

that T (M) cannot have an odd number of vertices

3.2 Generators of the automorphism group of a k-

orbit maniplex

It is well-known among polytopists that the automorphism group of a regular n-

polytope can be generated by n involutions. In fact, given a base flag Φ ∈ F(M), the

distinguished generators of Aut(M) with respect to Φ are involutions ρ0, ρ1, . . . , ρn−1 such

that Φρi = Φi.

Generators for the automorphism group of a two-orbit n-polytope can also be given

in terms of a base flag (see [29]). In this section we give a set of distinguished generators

(with respect to some base flag) for the automorphism group of a k-orbit (n−1)-maniplex

in terms of the symmetry type graph T (M), provided that T (M).

Given two walks W1 and W2 along the edges and semi-edges of T (M) such that the

final vertex of W1 is the starting vertex of W2, we define the sequence W1W2 as the walk

that traces all the edges of W1 and then all the edges of W2 in the same order; the inverse

of W1, denoted by W−1
1 , is the walk which has the final vertex of W1 as its starting vertex,

and traces all the edges of W1 in reversed order. Since each of the elements of Mon(M)

associated to the edges of T (M) is its own inverse, we shall forbid walks that trace the
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same edge two times consecutively (or just remove the edge from such walk, shortening

its length by two). Given a set of walks in T (M), we say that a subset W ′ ⊆ W is a

generating set of W if each W ∈ W can be expressed as a sequence of elements of W ′
and their inverses. Now, let W be the set of closed walks along the edges and semi-edges

of T (M) starting at a distinguished vertex v0. Recall that the walks along the edges and

semi-edges of T (M) correspond to permutations of the flags ofM; moreover, each closed

walk of W corresponds to an automorphism of M. Thus, by finding a generating set of

W , we will find a set of automorphisms of M that generates Aut(M). (However, the

converse is not true, as an automorphism of M may be described in more than one way

as a closed walk of T (M).) Given T (M), we may easily find such generating set. The

construction goes as follows:

Let M be a k-orbit maniplex of rank n − 1 such that C = (v0, v1, v2, ..., vq) is a walk

of minimal length that visits all the vertices of T (M). The sets of vertices and edges

(and semi-edges) of T (M) will be denoted by V and E, respectively. The set of edges

visited by C will be denoted by EC. In this section, the edges joining two vertices vi and

vj will be denoted by (vi, vj)1, (vi, vj)2, (vi, vj)3,...,(vi, vj)h; if j = i+ 1 then (vi, vj)1 ∈ EC.
(Note that in order to not start carrying many subindices, we modify the notation of

the edges of T (M) that we had used throughout the previous section. If one wants to

be consistent with the notation of the edges used previously, one would have to say that

the edges between vi and vj are (vi, vj)a1 , (vi, vj)a2 , . . . (vi, vj)ah). Similarly, we denote all

semi-edges incident to a vertex vi by (vi, vi)1, (vi, vi)2, (vi, vi)3,...,(vi, vi)l. For the sake

of simplicity, (vi, vj)1 will be just called (vi, vj). Let W be the set of all closed walks in

T (M) with v0 as its starting vertex. We shall now construct G(W) ⊆ W , a generating

set of W .

For each edge (vi, vj)m ∈ E\EC we shall define the walk wi,j,m = ((v0, v1), (v1, v2), ..., (vi−1, vi), (vi, vj)m, (vj, vj−1), (vj−1, vj−2), ..., (v1, v0)).

That is, we walk from v0 to vi in EC, and then we take the edge (vi, vj)m, and then we

walk back from vj to v0 in EC. Let We ⊆ W be the set of all such walks.

For each semi-edge (vi, vi)l ∈ E\EC we shall define the walk wi,i,l = ((v0, v1), (v1, v2), ..., (vi−1, vi), (vi, vi)l, (vi, vi−1), (vi−1, vi−2), ..., (v1, v0)).

That is, we walk from v0 to vi in EC, and then we take the semi-edge (vi, vi)l, and then

we walk back from vi to v0 in EC. Let Ws ⊆ W be the set of all such walks.

We define G(W) =We ∪Ws.

Lemma 3.5. With the notation from above, G(W) is a generating set for W.

Proof. We shall prove that any W ∈ W can be expressed as a sequence of elements of

G(W) and their inverses. Let W ∈ W be a closed walk among the edges and semi-edges

of T (M) starting at v0. From now on, semi-edges will be referred to simply as “edges”.

We shall proceed by induction over n, the number of edges in E \ EC visited by W .

If W visits only one edge in E \ EC, then W ∈ G(W) or W−1 ∈ G(W). Let us suppose
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that, if a closed walk among the edges of T (M) visits m different edges in E \ EC, with

m < n, then it can be expressed as a sequence of elements of G(W) and their inverses.

Let W ∈ W be a walk that visits exactly n edges in E \ EC. Let (va, vb)l ∈ E \ EC
be the last edge of E \ EC visited by W . Without loss of generality we may assume that

the vertex vb was visited after va, so let (vc, va)m be the edge that W visits just before

(va, vb)l (note that (vc, va)m may or may not be in EC). Let W1 ∈ W be the closed walk

that traces the same edges (in the same order) as W until reaching (vc, va)m and then

traces the edges (va, va−1), (va−1, va−2), ...,(v1, v0), and let W2 ∈ W be the closed walk

that traces the edges (v0, v1), (v1, v2), ..., (va−1, va) and then traces (va, vb)l and continues

the way W does to return to v0. It is clear that W1 visits exactly n− 1 edges in E \ EC
and that W2 visits only one. By inductive hypothesis both W1 and W2 can be expressed

as a sequence of elements of G(W), and therefore so does W since W = W1W2.

Let Φ be a base flag of M that projects to the initial vertex of a walk that contains

all vertices of T (M) of a symmetry type graph. Following the notation of [32], given w ∈
Mon(M) such that Φw is in the same orbit as Φ (that is, w ∈ NormMon(M)(StabMon(M)(Φ))),

we denote by αw the automorphism taking Φ to Φw. Moreover, if w = si1si2 . . . sik for

some i1, . . . ik ∈ {0, . . . , n− 1}, then we may also denote αw by αi1,i2,...ik .

The following theorem gives distinguished generators (with respect to some base flag)

of the automorphism group of a maniplex M in terms of a distinguished walk of T (M),

that travels through all the vertices of T (M). Its proof is a consequence of the previous

lemma.

Theorem 3.5. Let M be a k-orbit n-maniplex and let T (M) its symmetry type graph.

Suppose that v1, e1, v2, e2 . . . , eq−1, vq is a distinguished walk that visits every vertex of

T (M), with the edge ei having colour ai, for each i = 1, . . . q− 1. Let Si ⊂ {0, . . . , n− 1}
be such that vi has a semi-edge of colour s if and only if s ∈ Si. Let Bi,j ⊂ {0, . . . , n− 1}
be the set of colours of the edges between the vertices vi and vj (with i < j) that are not

in the distinguished walk and let Φ ∈ F(M) be a base flag of M such that Φ projects to

v1 in T (M). Then, the automorphism group of M is generated by the union of the sets

{αa1,a2,...,ai,s,ai,ai−1,...,a1 | i = 1, . . . , k − 1, s ∈ Si},

and

{αa1,a2,...,ai,b,aj ,aj−1,...,a1 | i, j ∈ {1, . . . , k − 1}, i < j, b ∈ Bi,j}.

We note that, in general, a set of generators of Aut(M) obtained from Theorem 3.5

can be reduced since there might be more than one element of G(W) representing the

same automorphism. For example, the closed walk W through an edge of colour 2, then

a 0-semi-edge and finally a 2-edge corresponds to the element s2s0s2 = s0 of Mon(M).
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Hence, the group generator induced by the walk W is the same as that induced by the

closed walk consisting only of the semi-edge of colour 0.

The following two corollaries give a set of generators for 2- and 3-orbit polytopes,

respectively, in a given class. The notation follows that of Theorem 3.5, where if the

indices of some α do not fit into the parameters of the set, we understand that such

automorphism is the identity.

Corollary 3.2. [30] Let M be a 2-orbit (n − 1)-maniplex in class 2I , for some I ⊂
{0, . . . , n− 1} and let j0 /∈ I. Then{

αi, αj0,i,j0 , αk,j0 | i ∈ I, k /∈ I
}

is a generating set for Aut(M).

Corollary 3.3. Let M be a 3-orbit (n− 1)-maniplex.

1. If M is in class 3i, for some i ∈ {1, . . . , n− 2}, then{
αj, αi,i−1,i+1,i, αi,i+1,i+2,i+1,i, αi,i+1,i,i+1,i | j ∈ {0, . . . , n− 1} \ {i}

}
is a generating set for Aut(M).

2. If M is in class 3i,i+1, for some i ∈ {0, . . . , n− 2}, then{
αj, αi,i−1,i, αi,i+1,i+2,i+1,i, αi,i+1,i,i+1,i | j ∈ {0, . . . , n− 1} \ {i}

}
is a generating set for Aut(M).





Chapter 4

Operators on maps and maniplexes

In 1979, Wilson puts together three different operators on maps: dual, Petrie and

opposite; in order to transform a regular map into another regular map, [57]. Later, in

1982, Lins showed properties of these operators on the flag graph of the map, to which

he considered as dualities of the map and named them dual, phial and skew, respectively,

[37]. Both, Wilson and Lins, showed that the dual and Petrie operators generate a copy

of S3, with the opposite operator as the third involution of the group.

In 2009, Hubard, Orbanić and Weiss, generalized the concept of duality and extend the

concept of Petrie-dual to higher ranks, regarding abstract polytopes, [32]. Later, in 2012,

Wilson described the dual, Petrie and opposite operators for maniplexes. In this chapter,

we define and show some properties of these three operators on maps and maniplexes.

4.1 Dual and self-dual maps and maniplexes

Given two n-maniplexes M and M∗, an anti-isomorphism δ : M → M∗ is a bi-

jection on the flags of M to the flags of M∗ that for each flag Φ ∈ F(M) and each

i ∈ {0, 1, . . . , n}, Φiδ = (Φδ)n−i ∈ F(M∗). If there exists an anti-isomorphism from M
to M∗, then M and M∗ are said to be duals of each other. In terms of the flag graphs,

δ can be regarded as a bijection between the vertices of GM and the vertices of GM∗ that

sends edges of colour i of GM to edges of colour n − i of GM∗ , for each i ∈ {0, 1, . . . , n}.
In Figure 4.1 is depicted an example of the flag graphs of two dual maps: the cube and

the octahedron.

If there exists a duality from a n-maniplex M to itself, we shall say that M is a

self-dual maniplex, and δ is called a duality of M. Given δ, ω two dualities of a self-dual

maniplex M, and Φ ∈ F(M), we have that Φiδω = (Φδ)2−iω = (Φδω)i, implying that

δω is an automorphism of M. Thus, the product of two dualities of a self-dual maniplex

is no longer a duality, but an automorphism of the map. In particular, the square of any

47



48 4.1. DUAL AND SELF-DUAL MAPS AND MANIPLEXES

Figure 4.1: Flag graphs of the cube (left) and its dual, the octahedron (right).

duality is an automorphism. The set of all dualities and automorphisms of a map M is

called the extended group D(M) of the map M. The automorphism group Aut(M) is

then a subgroup of index at most two in D(M). In fact, the index is two if and only if

the maniplex is self-dual.

Recall that for each flag Φ ∈ F(M) the set OΦ denotes the orbit of Φ under the

action of Aut(M), and Orb(M) := {OΦ | Φ ∈ F(M)} denotes the set of all the orbits

of F(M) under Aut(M). Hubard and Weiss showed the following very useful lemma in

[33], regarding the action of the dualities of a self-dual maiplex on its set of flag-orbits.

Lemma 4.1. Let M be a self-dual maniplex, δ a duality of M and O1,O2 ∈ Orb(M).

If δ sends a flag from O1 to a flag in O2, then all the dualities send flags of O1 to flags

in O2.

Proof. Let δ be a duality of a self-dual maniplexM. Given two orbits O1,O2 ∈ Orb(M)

and a flag Φ ∈ O1, suppose that Φδ ∈ O2. For any Ψ ∈ O1, we know that there exists

α ∈ Aut(M) such that Ψ = Φα, Then

Ψδ = (Φα)δ = (Φδδ−1α)δ = Φδ(δ−1αδ),

since δ−1αδ ∈ Aut(M), it follows that Ψδ ∈ O2. Moreover, if there is δ′, any other duality

of M, then Φδ′ = Φδδ−1δ′ where δ−1δ′ ∈ Aut(M), that implies that Φδ′ ∈ O2.

This lemma allows us to divide the self-dual n-maniplex into two different classes.

GivenM a self-dual maniplex, we say thatM is properly self-dual if its dualities preserve

all flag-orbits of M. Otherwise, we say that M is improperly self-dual.

One can take a more algebraic approach in dealing with dual maniplex and dualities. In

fact, if M is an n-maniplex with monodromy group Mon(M) generated by the sequence
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(s0, s1, . . . , sn), the monodromy group of the dual n-maniplex M∗ is generated by the

sequence (sn, sn−1, . . . , s0). Moreover, in [32] was proved that a mapM is self-dual if and

only if d : Mon(M) → Mon(M) sending si to sn−i is a group automorphism such that

d(N) and N are conjugated, where N = StabMon(M)(Φ) and Φ ∈ F(M). In other words,

this latter implies that si = d−1sn−id.

4.1.1 Symmetry type graph of dual and self-dual maniplexes

The dual type of a symmetry type graph T (M) is simply a symmetry type graph with

the same vertices and edges as T (M), but with a permutation of the colours of its edges

and semi-edges in such a way that each colour i ∈ {0, 1, . . . , n} is replaced by the colour

n− i. The following proposition is hence straightforward.

Proposition 4.1. If a maniplex M has symmetry type graph T (M) then its dual M∗

has the dual of T (M) as a symmetry type graph.

A symmetry type graph is said to be self-dual if it is isomorphic to its dual type.

Therefore, the symmetry type graph of a self-dual maniplex is a self-dual symmetry type

graph. However, the converse is not true. Not every maniplex with a self-dual type is

a self-dual maniplex, for example, the cube and the octahedron are duals to each other

(hence, they are not self-dual) and have the same symmetry type graph (as they are

regular maps).

Recall that each duality δ of a self-dual maniplex M induces a bijection between the

vertices of GM and the vertices of GM∗ that sends edges of colour i of GM to edges of

colour n− i in GM∗ , for each i ∈ {0, 1, . . . , n}. Then, Lemma 4.1, implies that δ induces

a permutation d of the vertices of T (M), such that the edge colours i and n − i are

interchanged, with i = 0, 1, . . . , n. We will refer to such permutation d as a duality of

the symmetry type graph T (M) of a self-dual maniplexM. In particular, the symmetry

type graph of a properly self-dual maniplex has a duality that fixes each of its vertices,

while the symmetry type graph of an improperly self-dual maniplex has a duality that

moves at least two of its vertices. Even more, since δ2 is an automorphism ofM, then δ2

fixes each orbit of M. Hence d2 acts as the identity on the vertices of T (M). Therefore,

for any duality δ of a self-dual maniplex M the corresponding duality d of its symmetry

type graph T (M) is a polarity; i.e. a duality of order two. However, in a similar way

as before, the symmetry type graph does not posses all the information of the maniplex.

That is, given a self-dual maniplex M, its symmetry type graph T (M) might not give

us enough information on whether M is properly or improperly self-dual. An example

of this is that chiral maniplexes can be either properly or improperly self-dual (see [33]),

and hence the symmetry type graph of a chiral maniplexes accepts dualities that fix both

vertices as well as dualities that interchange them.
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Given a self-dual symmetry type graph T (M) of a self-dual maniplex M, the above

paragraph incite us to add one edge (or semi-edge) of colour D to each vertex of T (M),

representing the action of the dualities of M on the flag orbits. The new pre-graph shall

be called the extended symmetry type graph of the self-dual maniplex M and denoted

by T (M). Since a self-dual reflexible maniplex is always properly self-dual, then the

extended symmetry type graph of a self-dual reflexible maniplex consists of a vertex and

n + 1 semi-edges, of colours 0, 1, . . . , n and D, respectively. Hence, as the distinguished

generators s0, s1, . . . , sn of Mon(M) label the edges of T (M), the edges of T (M) are

labeled by s0, s1, . . . sn and d.

In what follows we will restrict our study only to what concerns respect the self-dual

symmetry type graph of a map (2-maniplex), since it will be helpful for the study in

Chapter 5.

Self-dual symmetry type graphs of maps

Since for every flag Φ of a self-dual map M and any duality δ of M we have that

Φ1δ = (Φδ)1, the two factors of colours 1 and D of T (M) are a quotient of a 4-cycle.

Furthermore, since (Φδ)0δ = (Φδ2)2, and δ2 ∈ Aut(M), then the path of T (M) coloured

D, 0, D starting at a given vertex OΦ, ends at OΦ2 ; that is, any path of colours D, 2, D, 0

finishes at the same vertex of T (M) that started.

We make here the remark that not every self-dual symmetry type accepts proper

dualities, and that some symmetry types might accept more than one, essentially different,

duality. Every 2-orbit self-dual symmetry type admits both, a proper self-duality and

an improperly self-duality. However, this is not always the case, for example, the only

self-dual type of 3-orbit maps only admits a proper self-duality. Whenever an extended

symmetry type graph has a properly self-duality, the colour D of the graph consists of

one semi-edge per vertex. In fact, we have the following proposition.

Proposition 4.2. Let M be a self-dual map and let T (M) be its symmetry type graph.

a) If T (M) has a connected component in its 2-factor of colours 0 and 2 that has

exactly 4 vertices, then M is improperly self-dual.

b) If T (M) has a connected component in its 2-factor of colours 0 and 2 that has

exactly 2 vertices, one edge and 2 semi-edges, then M is improperly self-dual.

Proof. For a), let v1, . . . , v4 the four vertices of a connected component in the 2-factor

of T (M) of colours 0 and 2. Without loss of generality let us assume that {v1, v2} and

{v3, v4} are 0-edges of T (M), while {v1, v4} and {v2, v3} are 2-edges of T (M). If M
is a properly self-dual map, then the colour D of the extended graph T (M) consists of
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one semi-edge per vertex. Hence, the path D, 2, D, 0 takes the vertex v1 to the vertex

v3, contradicting the fact that every D, 2, D, 0 starts and finishes at the same vertex.

Therefore M is improperly self-dual. Part b) follows in a similar way.

The above proposition implies that if a map M is properly self-dual, then the con-

nected components in the 2-factor of T (M) of colours 0 and 2 either have one vertex or

have two vertices and a double edge between them. Hence, up to five orbits, the types

that admit properly self-dualities are types 1, 2, 21, 202, 302, 4Ap, 4Bp , 4Cp and 5Cp (see

Figures 3.2, 3.3, 3.6 and 3.7). Figure 4.2 shows all self-dual symmetry type graphs with

six and seven vertices that admit properly self-dualities.

6Cp6Ap 6Bp

7Ap

Figure 4.2: Symmetry type graphs with 6 and 7 orbits that admit proper self-dualitites.

It should be now straightforward to see that the following corollary holds.

Corollary 4.1. If k is even, there are exactly three extended symmetry type graphs with k

vertices admitting a proper self-duality. If k is odd, there is exactly one extended symmetry

type graph with k vertices admitting a proper self-duality.

The number of extended symmetry type graphs having improper self-dualities is more

convoluted. Figures 4.3, 4.4 and 4.5 shows the possible extended symmetry type graphs

with at most seven orbits, having improperly self-dualitites.
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20,2 221

4Dp

4Ap
4Bp 4Cp−1

4Ep−1

4F

4Gp

4Hp−2

4Cp−2

4Cp−34Ep−2

4Hp−1

Figure 4.3: Extended symmetry type graphs with at most 4 orbits, having improper self-
dualitites.
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6Fp

6Dp

6Ep−1

5Ap

6Ep−2

5Bp

6Ip−1

6Gp−1

6Ip−2

6Gp−2

6Hp−2

6Hp−1

6K

6Ap

6Lp6Jp

6Cp6Bp

Figure 4.4: Extended symmetry type graphs with 5 and 6 orbits, having improper self-dualitites.
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7Bp 7Cp

7Dp 7Ep

7Fp 7G

Figure 4.5: Extended symmetry type graphs with 7 orbits, having improper self-dualitites.

4.2 Petrie and self-petrie maps and maniplexes

In [6], Coxeter introduced the Petrie-polygons and extended this concept to any di-

mension. According to Coxeter, it was John Flinders Petrie who proposed the use of the

“zig-zag” polygons, in manner to find more regular polyhedra (with an infinite number of

faces). A Petri polygon is a “zig-zag” path among the edges of a map M in which every

two consecutive edges, but not three, belong to the same face. Note that each edge of a

Petrie polygon appears either just once in exactly two different Petrie polygons ofM, or

twice in the same Petrie polygon of M. Hence we can define a map with the same set of

vertices and edges of M, but with the Petrie polygons as faces. This map is known as

the Petrie-dual (or Petrial) map of M, and we denote it by MP . If a map M and its

Petrie-dual MP are isomorphic maps, then M is said to be self-Petrie.

Let s0, s1, s2 be the distinguished generators of Mon(M). Since the set of vertices

and edges in MP coincide with those of M, then the set of flags of MP coincide with

F(M). Even more, two flags in the flag graph GMP are 1-adjacent if and only if they are

adjacent in the flag graph GM by s1 (by the definition of the Petrie polygon). However,

recall that a walk along the s0 and s1 edges of GM define a face of M, but a face in MP

corresponds to a “zig-zag” path in M. Hence, two flags Φ,Ψ ∈ F(MP ) are 0-adjacent

in GMP if and only if Φs0s2 = Ψ (in GM). Thus, the set of faces of MP is defined as

{Φ〈s0s2,s1〉 | Φ ∈ F(M)}. The 4-cycles that represent the edges ofM are no longer cycles

of the flag-graph GMP . However, since a flag and its 2-adjacent flag in MP differ only
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on the face, and the vertices and edges of MP are the same as those of M, Φ and Ψ are

2-adjacent in MP if and only if they are 2-adjacent in M. In Figure 4.6 are presented

the flag graph of a cube in the left, and the flag graph of its Petrial in the right.

Figure 4.6: Flag graph of a cube (left) and its Petrial (right).

Therefore, there is a bijection, π say, between the vertices of GM and the vertices of

GMP that preserves the colours 1 and 2, and interchanges each (0,2)-path of length two

by an edge of colour 0. The monodromy group of the Petrie dual map ofM is generated

by the triple (s0s2, s1, s2) (where s0, s1, s2 are the generators of Mon(M)).

For n > 2, the Petrie maniplex MP of an n-maniplex M has the same set of flags

thanM, and the bijection between the vertices of GM and the vertices of GMP is defined

in the following way. If the monodromy group of M is generated by the elements of the

sequence (s0, s1, . . . , sn), then π̄ : Mon(M)→ Mon(MP ) is such that

π̄ : (s0, s1, . . . , sn−3, sn−2, sn−1, sn) 7→ (s0, s1, . . . , sn−3, , snsn−2, sn−1, sn);

where the elements of the sequence (s0, s1, . . . , sn−3, , snsn−2, sn−1, sn) generate the mon-

odromy group Mon(MP ) of the Petrie dual maniplex of M.

A Petrie-polygon on an (n− 1)-maniplexM is a path along the edges ofM such that

any n − 1 consecutive edges but no n belong to a Petie-polygon of a face of rank n − 1

([40]). Moreover, one can see that there is a bijection between all faces in MP of ranks

n− 2 and n− 1 and those of the same rank in M.

4.2.1 Symmetry type graphs of Petrie maps and maniplexes

Similarly to the dual type, the Petrie type of a symmetry type graph T (M) is a

symmetry type graph with the same number of vertices of T (M), which edges coloured 1

and 2 are preserved from T (M), but any (0,2)-path in T (M) is interchanged by an edge

coloured by 0.
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If M is an n-maniplex, π is a bijection between the set of flags F(M) and the set

of flags F(MP ) that preserves all edge-colours 0, 1, . . . , n − 3, n − 1, n and interchanges

each (n − 2, n)-path by colour n − 2 on the edges of MP . Hence, the Petrie type of a

symmetry type graph T (M) is a symmetry type graph with the same number of vertices

of T (M), which edges coloured 0, 1, . . . , n− 3, n− 1, n are preserved from T (M), but any

(n− 2, n)-path in T (M) is interchanged by an edge coloured by n− 2.

A symmetry type graph it is said to be self-Petrie if it is isomorphic to its Petrie type.

The symmetry type graph of a self-Petrie maniplex is a self-Petrie symmetry type graph.

Then, similarly to Proposition 4.1 we have the following propsition for the Petrie

symmetry type graphs of a maniplex.

Proposition 4.3. If a maniplex M has symmetry type graph T (M) then its Petrie-dual

MP has the petrie-dual of T (M) as symmetry type graph.

4.3 Opposite and self-opposite maps and maniplexes

Lins and Wilson, in [37] and [57], respectively, showed that for a map M, it can be

seen that the bijection π and the duality δ are operators onM that generate a subgroup

of Sym(F(M)) isomorphic to S3; where δ ◦ π ◦ δ = π ◦ δ ◦ π is the third element of

order two in it, which defines a bijection between the set of flags of M and the set of

flags of a map M′ known as the opposite map of M. As the dual M∗ is obtained by

exchanging vertices and faces of the map, and the Petrie MP is obtained by exchanging

faces with Petrie paths, fixing the vertices and edges, the opposite mapMopp is obtained

by exchanging vertices with Petrie paths leaving the faces ofM as faces ofMopp but with

a different orientation than that in the faces in M.

Therefore, opp := δ ◦ π ◦ δ = π ◦ δ ◦ π defines a bijection between the vertices of GM
and GMopp that preserves the edge colours 0 and 1, and interchanges each (0,2)-path of

length two by an edge of colour 2. The monodromy group of the opposite map of M is

generated by the triple (s0, s1, s0s2) (where s0, s1, s2 are the generators of Mon(M)).

Then, we can define the opposite maniplex Mopp of a maniplex M as that one with

the same set of flags as F(M) and with sequence (s0, s1, s0s2, s3, . . . , sn). It is not hard to

see that for n ≥ 3, the bijections δ and π̄ generate a subgroup of Sym(F(M)) isomorphic

to the dihedral group D4 = 〈δ, π|δ2, π2, (δπ)4〉. For n ≥ 5, both operations induced by

δ ◦ π ◦ δ and (δ ◦ π)2 = (π ◦ δ)2, restricted to a face of rank 3, yield the same operation,

namely the opposite operation.
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Figure 4.7: Flag graph of a cube (left) and its opposite (right).

4.3.1 Symmetry type graphs of opposite maps and maniplexes

The opposite type of a symmetry type graph T (M) is a symmetry type graph with

the same number of vertices of T (M), which edges coloured 0, 1, 3, . . . , n are preserved

from T (M), but any (0, 2)-path in T (M) is interchanged by an edge coloured by 2.

A symmetry type graph it is said to be self-opposite if it is isomorphic to its opposite

type. The symmetry type graph of a self-opposite maniplex is a self-opposite symmetry

type graph.

Then, similarly to Propositions 4.1 and 4.3, we have the following propsition for the

opposite symmetry type graphs of a maniplex.

Proposition 4.4. If a maniplex M has symmetry type graph T (M) then its opposite

Mopp has the opposite of T (M) as symmetry type graph.
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Introduction to map operations

In the previous chapter we defined three operators on maps and maniplexes: dual,

Petrie dual and opposite. Given the flag graph GM associated to the map or maniplex

M, the feature of these operators on M is that all three graphs GM∗ , GMP and GMopp ,

corresponding to the dualM∗, the Petrie dualMP and the oppositeMopp maps or mani-

plexes, have the same vertex set F(M) as GM. Also, each bijection δ, π and opp, between

the generators of the monodromy group Mon(M) and the generators of the respective

monodromy groups Mon(M∗), Mon(MP ) or Mon(Mopp), induces a permutation on the

edges of GM, describing the graphs GM∗ , GMP and GMopp of the dual, the Petrie dual and

the opposite map or maniplex of M, respectively. Later, using the same permutation

on the edges of GM (in manner to obtain the graphs GM∗ , GMP and GMopp from GM),

we showed that we can obtain the possible symmetry type graphs T (M∗), T (MP ) and

T (Mopp) from T (M).

In [45], Orbanić, Pellicer and Weiss, found all possible symmetry types of k-orbit maps

resulting from other (non-degenerated) maps, or 2-maniplexes, after applying operations

such as medial and truncation operations, for k ≤ 4. Motivated by the results in [45],

in the second part of the thesis, we look for a similar answer for maps obtained as a

result after applying other operations as leapfrog and chamfering. Also, we will obtain

an extension of the study in [45] and classify all possible symmetry types of maps up to

6-orbit maps.

In the following chapters, we define geometrically and combinatorially the operations

of medial, chamfering, truncation and leapfrog. In particular, we study the possible

symmetry type of maps that are obtained from these operations.

Unlike in the case of the dual, Petrie dual and opposite operators, where the flag

graphs GM, GM∗ , GMP and GMopp have the same number of vertices, we shall notice that

when we apply either the medial, chamfering, truncation or leapfrog operations to a map

M, the set of flags of the new map M̃ is an integer multiple of |F(M)|. This latter is

a clear consequence of the transformations made on the map M after applying any of

the operations. In fact, each operation can be described by a division of the fundamental

triangles (of the barycentric subdivision BS(M)) that induces an algorithm to obtain GM̃
out of GM. Such an algorithm will enable us to give an appropriate partition (A0, . . . ,Ar)
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on the vertices of the flag graph GM̃, of the medial, chamfering, truncated or leapfrog map

M̃, in such way that F(M̃) = A0 ∪ · · · ∪Ar where each Aj is a block for the monodromy

group Mon(M̃), with j = 0, . . . , r.

It is not hard to see that the automorphism group Aut(M) ofM induces a subgroup

H ≤ Aut(M̃) of the automorphism group of M̃. Intuitively, since the automorphism

group of the mapM partitions its set of flags in k orbits, we might think that if |F(M̃)| =
r|F(M)|, then the map M̃ is a rk-orbit map. However, it is possible that M̃ has less

than rk flag-orbits. We will discuss this phenomenon in the following chapters.

In Chapter 5, we study the medial operation on maps and enumerate all medial sym-

metry type graphs with at most 7 vertices. In particular we show that every type of

edge-transitive map is a medial type. In Chapter 6, we study the chamfering operation

on maps. Finally, in Chapter 7, we study the truncation and leapfrog operations, based

on the results obtained in [45] for truncation, and give an extension to such results up to

k ≤ 7 and k = 9.



Chapter 5

Medial operation on maps

There is an interesting operation on maps called the medial of a map (see [8, 45, 49]).

It is well-known that the medial of a tetrahedron is an octahedron and its medial is a

cube-octahedron (see Figure 5.1). While the former polyhedra are regular, the latter is

only a 2-orbit edge-transitive as a map. For any map M, we define the medial of M,

Figure 5.1: Octahedron (left) and its medial map, the cube-octahedron (right).

Me(M), in the following way. The vertex set of Me(M) is the edge set of M, E(M).

Two vertices of Me(M) have an edge joining them if the corresponding edges ofM share

a vertex and belong to the same face. This is,

E(Me(M)) := {{Φ0,Φ2}|Φ ∈ F(M)}.

This gives raise to a graph embedded on the same surface as M. Hence, the faces of

Me(M) are simply the connected regions of the complement of the graph on the surface.

It is then not difficult to see that the face set of Me(M) is in one to one correspondence

with the set containing all faces and vertices of M, i.e.

F (Me(M)) := F (M) ∪ V (M).
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In fact, it is straightforward to see that the medial of a mapM and the medial of its dual

M∗ are isomorphic.

We note that every flag of the original map M is divided into two flags of the medial

map Me(M), as is depicted in Figure 5.2. In fact, given a flag Φ = (Φ0,Φ1,Φ2) of M,

Φ2

Φ1
Φ0

Figure 5.2: The two flags of F(Me(M)) corresponding to the flag Φ = (Φ0,Φ1,Φ2) ∈ F(M).

one can write the two flags of Me(M) corresponding to Φ as

(Φ, 0) := (Φ1, {Φ0,Φ2},Φ0) and (Φ, 2) := (Φ1, {Φ0,Φ2},Φ2).

It is then straightforward to see that the adjacencies of the flags of Me(M) are closely

related to those of the flags of M, in the following way.

(Φ, 0)0 = (Φs1 , 0), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φ, 2),

(Φ, 2)0 = (Φs1 , 2), (Φ, 2)1 = (Φs0 , 2), (Φ, 2)2 = (Φ, 0),

where s0, s1 and s2 are the generators of Mon(M). Letm0, m1 andm2 be the distinguished

generators of Mon(Me(M)). Then m0, m1 and m2 are fixed-point free involutions, where

m0m2 = m2m0 and, (m1m2)4 = id. The latter relation implied by the fact that every

vertex of a medial map Me(M) has valency 4.

It is now easy to obtain the flag graph of Me(M) from the flag graph of M. An

algorithm showing how to do this is indicated in Figure 5.3. Such algorithm induces a

bipartition (A0,A2) on the vertices of GMe(M), where A0 := {(Φ, 0)|Φ ∈ F(M)} and

A2 := {(Φ, 2)|Φ ∈ F(M)}, and consequently we have the following proposition.

Proposition 5.1. The flag graph GMe(M), of the medial map Me(M) of a map M, can

be quotient into a graph isomorphic to the symmetry type graph 201.

Proof. LetA0 = {(Φ, 0)|Φ ∈ F(M)} andA2 = {(Φ, 2)|Φ ∈ F(M)}. Then, F(Me(M)) =

A0∪A2 and A0∩A2 = ∅. Hence, (A0,A2) is a bi-partition of the set of flags F(Me(M)).

Based on Figure 5.3, it is straightforward to see that the quotient of GMe(M) over such

bi-partition, is isomorphic to the symmetry type graph of a map with symmetry type 201

(see Figure 3.2).
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Figure 5.3: Any local representation of a flag, in the left. The result under the medial operation,
locally obtained, in the right.

In the past several authors have observed that the medial of any regular map must be

edge-transitive; in fact, in [32] Hubard, Orbanić and Weiss showed that the medial of a

regular map is either regular (if the original map is self-dual) or of type 201 (otherwise).

The nature of edge-transitive tessellations have been studied by Graver and Watkins,

[26]. They were the first to determine all 14 different symmetry types of edge-transitive

maps. Later, Širan, Tucker and Watkins [53] have provided examples of maps from each of

the 14 types. Several authors have been trying to determine the nature of edge-transitive

maps that are medial maps, i.e. maps that are medials of other maps. For instance,

Lemma 2.2 in [53] lists six symmetry types that can be edge-transitive medials of edge-

transitive maps. In [32] it is shown that there are, in fact, seven such symmetry types.

In [45, Table 2] the authors give 10 symmetry types of edge-transitive maps that may be

medials of other, not necessarily edge-transitive maps. Unfortunately, they miss the fact

that four other edge-transitive types may also be medials.

5.1 Medial of k-orbit maps

In [32], Hubard, Orbanić and Weiss showed that the automorphism group of the medial

map Me(M) of a map M is isomorphic to the extended group D(M) of M, and used

proper and improper self-dualities of the maps to characterize regular and 2-orbit medial

maps, in terms of their symmetry type. In particular they showed that a medial map

Me(M) is regular if and only if M is regular and self-dual. In [32, Table 4] we further
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observe that every 2-orbit symmetry type can be the medial map of a regular or a 2-orbit

map. In [45], Orbanić, Pellicer and Weiss extended this to characterize the symmetry

types of all medial maps of 2-orbit maps. They further proved that if M is a k-orbit

map, then Me(M) is a k-orbit or a 2k-orbit map, depending on whether or not M is a

self-dual map. Here we show that every symmetry type of edge-transitive map is a medial

symmetry type.

In the following subsections, we make use of symmetry type graphs and extended

symmetry type graphs (see Section 4.1.1), and an operation on them to obtain medial

symmetry type graphs. We further enumerate all the medial types with at most 7 vertices

and show that indeed every type of edge-transitive map is a medial type.

5.1.1 Medial symmetry type graphs

We shall say that a medial symmetry type graph is the symmetry type graph of a medial

map, denoted by T (Me(M)). In what follows we classify all possible medial symmetry

type graphs with at most 7 vertices. To this end, we develop basic operations on the

symmetry type graphs as well as on the extended symmetry type graphs, based on the

flag graphs of a map and its medial.

If a mapM is not a self-dual map, we may think of the vertices of the medial symmetry

type graph T (Me(M)), as those obtained by two copies of the vertices of the symmetry

type graph T (M). As with the flag graph, given a vertex OΦ of T (M) we can write

its corresponding two copies in T (Me(M)) as (OΦ, 0) and (OΦ, 2). Note that the edges

between these copies of the vertices of T (M) must respect the colour adjacency of the

flags in the flag graph of Me(M). Then, we can follow the same algorithm shown in

the Figure 5.3 to determine the adjacencies between the vertices of T (Me(M)). In other

words, the vertices (OΦ, 0) and (OΦ, 2) are adjacent by an edge of colour 2; for i = 0, 2

there is an edge of colour 0 between (OΦ, i) and (OΨ, i) if and only if OΦ and OΨ are

adjacent by the colour 1. Finally, there is an edge of colour 1 between (OΦ, i) and (OΨ, i)

if and only if OΦ and OΨ are adjacent by the colour 0 or 2.

Hence, if a k-orbit map M is not a self-dual map, the medial symmetry type graph

T (Me(M)) of Me(M) (obtained as it was described in the paragraph above) has 2k

vertices. On the other hand, when M is a self-dual k-orbit map, to obtain its medial

symmetry type graph with k vertices, we take into consideration the extended symmetry

type graph T (M). In this case we shall identify each vertex of the form (OΦ, 0) with a

vertex of the form (OΨ, 2) by an edge of colour 2, whenever OΦ and OΨ are adjacent by

the colour D in T (M), and permute colours 0 and 1. Hence, the colours of the edges of
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T (Me(M)) can be defined by the following involutions:

m0 = s1,

m1 = s0 (or s2),

m2 = d.

Note that if Me(M) is a k-orbit map, with k odd, thenM is a self-dual k-orbit map.

However, if k is even, thenM is either a k- or a k/2-orbit map. Hence, to obtain all medial

symmetry type graphs with at most 7 vertices, one has to apply the above operations to

all symmetry type graphs with at least 3 vertices, as well as to all extended symmetry

type graphs with at most 7 vertices.

In [45, Table 2] are given the symmetry types of medials coming from 1- and 2-orbit

maps. Following the algorithm described above, in the left table of Table 5.1 we repeat

the information contained in [45, Table 2] and give the symmetry type of medials coming

from 3-orbit maps. In the right table of Table 5.1 and in both tables of Table 5.2 are

given the symmetry type of medials coming from k-orbit self-dual maps, for 4 ≤ k ≤ 7.

In the second row, of all tables in Tables 5.1 and 5.2, “P” stands for properly self-dual,

“I” for improperly self-dual and “N” for not self-dual, the number after the I, in the cases

it exists, stands for the type of improperly duality that the map possesses. All medial

types with at most 5 vertices are already given in Figures 3.2–3.7; medial types with 6

and 7 vertices are given in Figures 5.4 and 5.5, respectively.

Sym type Sym type
of M of Me(M)

Duality P I N
1 1 — 201

2 22 2 4G
20 — — 4H
21 202 20 4C
22 — — 4H
201 — — 4A
202 212 21 4F
212 — — 4A
30 — — 6D
32 — — 6D
302 30 — 6M

Sym type Sym type
of M of Me(M)

Duality P I-1 I-2 I-3
4Ap 4Bd

4Hd
— —

4Bp 4Ad
4Ed

— —
4Cp 4Cd

4Cp 4Gd
4Gp

4Dp — 4Dd
— —

4Ep — 4Bp 4Hp —
4F — 4A — —
4Gp — 4E — —
4Hp — 4Ap 4Ep —
5A — 5Dpd

— —
5Bp — 5Dop — —
5Cp 5Cd

— — —

Table 5.1: Medial symmetry types from 1-, 2-, 3-orbit maps (in the left), and from 4-, and
5-orbit self-dual maps (in the right).
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6Ad

6D

6Gd 6Hd 6Id

6Bd 6Cd

6Ed6Dp

6L 6Lp 6M

6Mp 6N 6Np

6O 6Op 6P

6Pp 6Q 6Qp

Figure 5.4: Medial symmetry types with 6 vertices.
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Sym type Sym type
of M of Me(M)

Duality P I-1 I-2
6Ap 6Cd

6Np —
6Bp 6Bd

6N —
6Cp 6Ad

6Mp —
6Dp — 6Lp —
6Ep — 6Op 6Id
6Fp — 6L —
6Gp — 6Gd

6O
6Hp — 6Hd

6P
6Ip — 6Ed

6Pp

6Jp — 6Qp —

Sym type Sym type
of M of Me(M)

Duality P I
6K — 6Q
6Lp — 6Dp

7Ap 7Ad
—

7Bp — 7H
7Cp — 7Hp

7Dp — 7I
7Ep — 7Ip
7Fp — 7Ed

7G — 7J

Table 5.2: Medial symmetry types from 6- and 7-orbit self-dual maps.

7Ad 7Ed

7H 7Hp

7I 7Ip

7Dp

Figure 5.5: Medial symmetry types with 7 vertices.
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5.1.2 Symmetry types of edge-transitive maps that are medial
of other edge-transitive maps

To show that each of the 14 edge-transitive symmetry type graphs is the symmetry

type graph of a medial map we shall, for each type, give an example.

Orbanić, in [42] generated a data base of small non-degenerated edge transitive maps.

His data base contains small non-degenerated edge transitive maps of types 1, 212, 22, 4F ,

4Hd
and 4Gd

; the remaining types can be obtained from these one by making use of the

Petrie and dual operations (see Figures 3.2 and 3.5).

Using the tables in Table 5.1, we obtain Table 5.3. The first column of Table 5.3 lists

all the candidate types for maps that could, by applying medial operation, yield the maps

with edge-transitive types. The second column indicates which type of duality the map

in the first column should have to obtain the medial type in the third column. In the

second column the number after the Improper, in the cases it exists, stands for the type

of improperly duality that the map possesses, see right table of Table 5.1.

T (M) Duality T (Me(M))

1
Proper 1
None 201

202

Proper 212

Improper 21

None 4F
21 Improper 20

2
Proper 22

Improper 2
None 4G

4Cp

Improper-2 4Gd

Improper-3 4Gp

20, 22 None 4H
4Ap Improper 4Hd

4Ep Improper-2 4Hp

Table 5.3: Edge-transitive medial symmetry types

Theorem 5.1. Each of the 14 edge-transitive symmetry type graphs is the symmetry type

graph of a medial map.

Proof. Recall that the monodromy group of the medial map Me(M) of a mapM is the

group Mon(Me(M)) := 〈m0,m1,m2〉, generated by three involutions where (m0m2)2 =

(m1m2)4 = id. Let N := StabMon(Me(M))((Φ, 2)) be the stabilizer of the base flag (Φ, 2) ∈
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F(Me(M)) under the action of the monodromy group of Me(M). Observe that

(Φ, 2)m1 = (Φs0 , 2), (Φ, 2)m0 = (Φs1 , 2) and (Φ, 2)m2m1m2 = (Φs2 , 2).

Then, the subgroup H := 〈m1,m0,m2m1m2〉 ≤ Mon(Me(M)) stabilizes the subset A2 :=

{(Φ, 2)|Φ ∈ F(M)} of the flag-set F(Me(M)). According to [45, Sec. 4.1], we have that

H has index 2 in Mon(Me(M)).

Then the de-medialized map is defined by taking the action of H on the cosets of

N ≤ H and relabeling generators of H in the respective order by m0, m1 and m2. Note

that the dual of the result (yielding the same medial map) could be obtained by taking

the conjugate stabilizer m2Nm2 instead of N .

Using this method, the software package Magma and the database of small non-

degenerate edge-transitive maps [42], all the examples supporting options in Table 5.3

are calculated and summarized in Table 5.4. It is not claimed that they are minimal

examples, though we tried to choose minimal such cases where both an original map and

its medial are non-degenerate and both with edge multiplicity 1.
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5.2 Me(Me(M)), maps of type {4, 4}
Note that if the map M is equivelar of Schläfli type {p, q}, the faces of Me(M) are

p-gons and q-gons. Therefore, Me(M) is equivelar if and only if p = q; in such case

Me(M) has Schläfli type {p, 4}.

Proposition 5.2. Let M be a k-orbit map. If Me(Me(M)) is also a k-orbit map, then

M has Schläfli type {4, 4}.

Proof. Me(Me(M) is a k-orbit map if and only if both Me(M) and M are self-dual

maps. Since Me(M) is a medial map, then each of its vertices has valency 4; the fact that

is self-dual implies that Me(M) has Schläfly type {4, 4}. On the other hand the faces

of Me(M) correspond to the vertices and faces of M. Because each face of Me(M) is a

4-gon, each face of M is also a 4-gon and each vertex of M has valency 4, implying the

proposition.

The maps of type {4, 4} are maps on the torus or on the Klein Bottle. In [31], Hubard,

Orbanić, Pellicer and Weiss study the symmetry types of equivelar maps on the torus.

The maps of type {4, 4} on the torus have symmetry type 1, 2, 21, 202 or 4Cp and are

all self-dual. The medial of a map {4, 4} on the torus of type 1, 2 or 4Cp is of the same

type as the original, while for types 21 and 202 the medial is precisely of the other type.

Therefore Me(Me(M)) has the same symmetry type graph, whenever M is a map on

the torus of Schläfli type {4, 4}. In Figures 5.6–5.9 examples of equivelar toroids of type

{4, 4} and their corresponding medial maps are depicted.

{4, 4}(3,0),(0,3) {4, 4}(3,3),(3,−3)

Me(M) Me(Me(M))

{4, 4}(6,0),(0,6)

Figure 5.6: Medial of regular toroids of type {4, 4}.

In [58] Wilson shows that there are two kinds of map of type {4, 4} in the Klein bottle,

and denotes them by {4, 4}\m,n\ and {4, 4}|m,n|, respectively. The map in the Klein bottle,

described as {4, 4}|m,n|, results by using two glide reflections of length m on parallel axes

to the lines of the square grid {4, 4}, that are n
2

apart, lying along a line or midway

between two lines. And, the map in the Klein bottle, described as {4, 4}\m,n\, results by

using two glide reflections of length n
√

2
2

on axes at 45◦ angle to the lines of the square grid

{4, 4} that are m
√

2
2

apart, passing through vertices and face-centres or through midpoints
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{4, 4}(3,1),(−1,3) {4, 4}(4,2),(−2,4)

Me(M)

Figure 5.7: Medial of chiral toroids of type {4, 4}.

{4, 4}(3,2),(2,0) {4, 4}(4,3),(3,0

Me(M)

Figure 5.8: Medial of 4-orbit toroids of type {4, 4}, with symmetry type 4Cp .

{4, 4}(3,0),(0,2) {4, 4}(3,3),(−2,2)

Me(M) Me(Me(M))

{4, 4}(6,0),(0,4)

Figure 5.9: Medial of 2-orbit toroids of type {4, 4}, with symmetry types 202 and 21.



CHAPTER 5. MEDIAL OPERATION ON MAPS 75

of edges. In both cases, the generating glide reflections preserve the square grid {4, 4}.
From [58] we can see that these maps have 2mn edges, and thereby 8mn flags. Moreover,

the automorphism group of {4, 4}\m,n\ it has 4m elements, while for {4, 4}|m,n| has 8m

elements if n is even and 4m otherwise. Thus, {4, 4}\m,n\ is a 2n-orbit map and {4, 4}|m,n|
has n flag orbits if n is even and 2n otherwise. In Figure 5.10 examples of equivelar maps

of type {4, 4} in the Klein bottle are depicted.

{4, 4}|3,4| {4, 4}\6,4\

Me(M)

{4, 4}|3,5| {4, 4}\6,5\

Me(M)

Me(Me(M))

{4, 4}|6,8|

Me(Me(M))

{4, 4}|6,10|

Figure 5.10: Medial of maps of type {4, 4}|m,n| in the Klein bottle.

Based on [58, Table I], we have that for a map of type {4, 4}\m,n\, it can be seen that

Me(Me({4, 4}\m,n\)) = {4, 4}\2m,2n\; which has 32mn flags and its automorphism group

has 8m elements. Hence, the map Me(Me({4, 4}\m,n\)) is a 4n-orbit map (i.e. has two

times the number of orbits than the map {4, 4}\m,n\). On the other hand, if the map M
is of type {4, 4}|m,n|, the map Me(Me(M)) is the dual map of {4, 4}|2m,2n|. Since for any

map and its dual have the same number of flag orbits, and the edges on both maps are

in one-to-one correspondence, we can compute that Me(Me(M)) has 32mn flags and its

automorphism group has 16m elements. Hence the map Me(Me({4, 4}|m,n|)) is a 2n-orbit

map. We therefore have the following proposition.

Proposition 5.3. Let M be a k-orbit map. Then Me(Me(M)) is a k-orbit map if M
is a map on the torus of type {4, 4}, or is a map on the Klein Bottle of type {4, 4}|m,n|,
where n is odd.

In Table 5.5 are enumerated all symmetry types of self-dual and medial types of k-orbit

maps, with 1 ≤ k ≤ 10.

We shall note that for k = 8 there is a self-dual symmetry type with no polarities, its

symmetry type graph is depicted in Figure 5.11.
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k 1 2 3 4 5 6 7 8 9 10
No. of types 1 7 3 22 13 70 67 315 393 1577 (a)
No. of self 1 3 1 8 3 12 7 45 25 91 (b)
dual types
No. of self 1 3 1 8 3 12 7 44 25 91 (c)
polar types
No. of self 1 6 1 21 3 23 7 101 25 128 (d)
dualities

No. of self 1 6 1 17 3 21 7 83 25 124 (e)
polarities

No. of medial 1 6 1 15 3 19 7 73 25 120 (f)
types from k-orb maps

No. of total 1 7 1 20 3 21 7 88 25 128 (g)
medial types

Table 5.5: Number of symmetry type graphs, self-dual types and medials types

Figure 5.11: A self-dual symmetry type graph with 8 vertices and no polarities

5.3 Dual of medial map

To conclude with this chapter, we describe the dual map of Me(M). It is straight-

forward to see that the faces of the map (Me(M))∗ are 4-gons (squares). Moreover, the

valency of the vertices of the map (Me(M))∗ correspond to the length of the faces and

the valency of the vertices ofM. In Figure 5.12 is depicted the dual of the cuboctahedron

(dual of the medial of the octahedron).

Figure 5.12: Cuboctahedron (left) and its dual (right).
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Recall that the bijection δ : Mon(M)→ Mon(M∗) induces a permutation on the edges

of GM sending edges of colour i = 0, 1, 2 to edges of colour 2 − i. Then, the following

proposition is a consequence from Proposition 5.1.

Proposition 5.4. The flag graph G(Me(M))∗, of the dual of the medial map (Me(M))∗ of

a map M, can be quotient into a graph isoorphic to the symmetry type graph 212.





Chapter 6

Chamfering operation on maps

The chamfering map Cham(M) of any map M is produced, as its name says: by

chamfer the edges inM. More precisely, the edges of a mapM are replaced by hexagonal

faces, surrounding the faces of M, in Cham(M) (see Figure 6.1). Hence, the set of faces

Figure 6.1: Dodecahedron (left) and the chamfering of the dodecahedron (right).

of Cham(M) is in correspondence with the set of faces F (M) and the set of edges E(M)

of M. That is, the set of faces of Cham(M) is

F (Cham(M)) = F (M) ∪ E(M).

The map Cham(M) has two types of edges: those between hexagonal faces and those

between a face Φ2 in F (M) and its adjacent hexagonal faces (corresponding to the incident

edges on the face Φ2 in M). This is, the set of edges of Cham(M) is

E(Cham(M)) = {{Φ0, {Φ0,Φ2}}|Φ ∈ F(M)} ∪ {{Φ1,Φ2}|Φ ∈ F(M)}.

In fact, Cham(M) has exactly 4|E(M)| edges. Finally, the set of vertices ofM is a proper

subset of the vertices of Cham(M), and the remaining 2|E(M)| vertices in V (Cham(M))\

79
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V (M) (each of these vertices are adjacent to exactly one vertex in V (M)), all have degree

3. Thus, the set of vertices of Cham(M) is

V (Cham(M)) = V (M) ∪ {{Φ0,Φ2}|Φ ∈ F(M)}.

For an alternative definition of chamfering we refer the reader to [15].

Observe that the map on the left (dodecahedron) in Figure 6.1 is regular, while the

map on the right is a 4-orbit map with symmetry type 4Dp (Figure 6.2). There is a single

OΨ
OΨ2 OΨ2,1

OΨ2,1,0

Figure 6.2: Symmetry type graph 4Dp .

orbit of flags, OΨ, on a pentagon and three different flags on a hexagon. Note that by

chamfering a non-degenerated map M, every flag Φ := (Φ0,Φ1,Φ2) in F(M) is divided

into four flags of Cham(M), as is depicted in Figure 6.3, and the corresponding four flags

Φ0

Φ2

Φ1

Figure 6.3: The four respective flags of F(Cham(M)) to the flag Φ = {Φ0,Φ1,Φ2} ∈ F(M).

to Φ ∈ F(M) in Cham(M) can be written as

(Φ, 0) :=(Φ0, {Φ0, {Φ0,Φ2}},Φ1), (Φ, 1) :=({Φ0,Φ2}, {Φ0, {Φ0,Φ2}},Φ1),

(Φ, 2) :=({Φ0,Φ2}, {Φ1,Φ2},Φ1), (Φ, 3) :=({Φ0,Φ2}, {Φ1,Φ2},Φ2).

It is then straightforward to see that the adjacencies of the flags of Cham(M) are closely

related to those of the flags of M. In fact, we have that,

(Φ, 0)0 = (Φ, 1), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φs1 , 0),

(Φ, 1)0 = (Φ, 0), (Φ, 1)1 = (Φ, 2), (Φ, 1)2 = (Φs1 , 1),

(Φ, 2)0 = (Φs0 , 2), (Φ, 2)1 = (Φ, 1), (Φ, 2)2 = (Φ, 3),

(Φ, 3)0 = (Φs0 , 3), (Φ, 3)1 = (Φs1 , 3), (Φ, 3)2 = (Φ, 2).
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Thus, we define the algorithm in Figure 6.4 to construct the flag graph of Cham(M) out

of GM, and consequently the following proposition.

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

Figure 6.4: Local representation of a flag in GM, in the left. The image under the chamfering
operation, locally obtained, in the right.

Proposition 6.1. The flag graph GCham(M), of the chamfering map Cham(M) of a map

M, can be quotient into a graph isomorphic to the symmetry type graph 4Dp.

Proof. Let Ai = {(Φ, i)|Φ ∈ F(M)} Then, F(Cham(M)) = A0 ∪ A1 ∪ A2 ∪ A3 and

Ai ∩ Aj = ∅ whenever i 6= j. Hence, (A0,A1,A2,A3) is a partition of the set of flags

F(Cham(M)). Based on Figure 6.4, it is straightforward to see that the quotient of

GCham(M) over such partition, is isomorphic to the symmetry type graph of a map with

symmetry type 4Dp (see Figure 6.2).

Note that for any flags Υ ∈ A3, Υ2 ∈ A2, Υ2,1 ∈ A1 and Υ2,1,0 ∈ A0, we can

define a flag ΦΥ ∈ F(M), by assembling these four flags in Cham(M). Observe that

an automorphism ᾱ ∈ Aut(Cham(M)) that sends a flag Υ′ ∈ Ai to another flag also

contained in Ai, with i = 0, 1, 2, 3, is induced by an automorphism α ∈ Aut(M) that

sends ΦΥ′ to the assembled flag ΦΥ′ᾱ inM. Say this in other way, for each automorphism

α ∈ Aut(M), there is an automorphism ᾱ ∈ Aut(Cham(M)) such that (Φ, i)ᾱ = (Φα, i),

with Φ ∈ F(M) and i = 0, 1, 2, 3. Then, it follows that

|Orb(Cham(M))| ≤ 4|Orb(M)|.
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Motivated by [45], we are interested on study the number of possible flag-orbits that

the chamfering map Cham(M) of a k-orbit map M might have.

Certainly, the chamfering map Cham(M), of a k-orbit map M, has 4k orbits on the

set of flags F(Cham(M)), if for any Φ,Ψ ∈ F(M) there is no flag of the form (Φ, i) in

the same orbit as a flag of the form (Ψ, j), with i, j ∈ {0, 1, 2, 3} and i 6= j. In fact, if the

chamfering map Cham(M) of a k-orbit map M is a 4k-orbit map then, the algorithm

presented in Figure 6.4 works as an algorithm on the vertices of T (M) to obtain the

symmetry type graph T (Cham(M)) with 4k vertices, of the chamfering map of M, we

shall call such graph as the chamfering symmetry type graph of T (M).

We denote by r0, r1 and r2 the distinguished generators of Mon(Cham(M)). Observe

that, in particular, (Φs0 , 3) = (Φ, 3)r0 , (Φs1 , 3) = (Φ, 3)r1 , and (Φs2 , 3) = (Φ, 3)r2r1r0r1r0r1r2 ,

for any Φ ∈ F(M). This is, the action of the subgroup

M = 〈r0, r1, r2r1r0r1r0r1r2〉 ≤ Mon(Cham(M))

over the subset of flags A3 = {(Φ, 3)|Φ ∈ F(M)} in Cham(M) is isomorphic to the

action of the monodromy group Mon(M) over the set F(M), inducing the following

action isomorphism.

(f, g) : (F(M), 〈s0, s1, s2〉)→ (A3, 〈r0, r1, r2r1r0r1r0r1r2〉),

where f : Φ 7→ (Φ, 3) is a bijective function, and g : (s0, s1, s2) 7→ (r0, r1, r2r1r0r1r0r1r2)

is a group isomorphism, [32]. Then, the action of M is transitive on the set of flags A3.

In fact the action of M on F(Cham(M)) fixes the set A3 and permutes the sets A0, A1

and A2. Furthermore, because

(Φ, 3)r2 = (Φ, 2), (Φ, 3)r2r1 = (Φ, 1) and (Φ, 3)r2r1r0 = (Φ, 0),

conjugating M by the elements r2, r2r1 and r2r1r0 in Mon(Cham(M)), we obtain three

different subgroups of Mon(Cham(M)), that act transitively on the set of flags A2, A1

and A0, respectively. Therefore, by letting a0 = r2r1r0, a1 = r2r1, a2 = r2, and a3 = id,

the conjugate subgroup a−1
i Mai ≤ Mon(Cham(M)) fixes the set Ai, for each i = 0, 1, 2, 3,

and permutes the sets Aj1 , Aj2 and Aj3 , with j1, j2, j3 ∈ {0, 1, 2, 3} \ {i}.
With the following lemma we see that the chamfering map of a k-orbit map M, not

necessarily has 4k flag-orbits. Recall that an equivelar map with Schläfli type {6, 3} is a

map that all its faces are 6-gons, and all its vertices have degree 3.

Lemma 6.1. Let Cham(M) be the chamfering map of a map M. If there is an auto-

morphism α ∈ Aut(Cham(M)) such that (Φ, i)α = (Ψ, j) for some Φ,Ψ ∈ F(M) and

i 6= j, with i, j ∈ {0, 1, 2, 3}. Then, M is an equivelar map with Schläfli type {6, 3}.
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Proof. Consider the partition (A0,A1,A2,A3) of the set F(Cham(M)), where Ai =

{(Φ, i)|Φ ∈ F(M)}, i = 0, 1, 2, 3, and recall that if we assemble the flags Υ ∈ A3,

Υ2 ∈ A2, Υ2,1 ∈ A1 and Υ2,1,0 ∈ A0, we can define a flag ΦΥ ∈ F(M).

Suppose that there is an automorphism α ∈ Aut(Cham(M)) such that (Φ, i)α = (Ψ, j)

for some Φ,Ψ ∈ F(M) and i 6= j, with i, j ∈ {0, 1, 2, 3}. We shall verify the image, under

α, of the assembled flags (Φ, 0), (Φ, 1), (Φ, 2), (Φ, 3), corresponding to Φ ∈ F(M), in terms

of the adjacent flags of (Ψ, j). Note that Φ0 ∈ (Φ, 0) and Φ2 ∈ (Φ, 3), but they are neither

in (Φ, 1) nor in (Φ, 2). Then, we have the following cases.

0) For i = 0.

– If (Φ, 0)α = (Ψ, 1), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ2,1)1, since (Φ, 0)α =

(Ψ, 1) := ({Ψ0,Ψ2}, {Ψ0{Ψ0,Ψ2}},Ψ1) and

(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 1)0,1,2 = (Ψ2,1, 0) := (Ψ0, {Ψ0, {Ψ0, (Ψ
2)2}}, (Ψ2,1)1).

– If (Φ, 0)α = (Ψ, 2), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ0,1)1, since (Φ, 0)α =

(Ψ, 2) := ({Ψ0,Ψ2}, {Ψ1,Ψ2},Ψ1) and

(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 2)0,1,2 = (Ψ0,1, 1) := ({(Ψ0)0,Ψ2}, {(Ψ0)0, {(Ψ0)0,Ψ2}}, (Ψ0,1)1).

– If (Φ, 0)α = (Ψ, 3), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ0,1)1, since (Φ, 0)α =

(Ψ, 3) := ({Ψ0,Ψ2}, {Ψ1,Ψ2},Ψ2) and

(Φ, 3)α = (Φ, 0)0,1,2α = ((Φ, 0)α)0,1,2 = (Ψ, 3)0,1,2 = (Ψ0,1, 2) := ({(Ψ0)0,Ψ2}, {(Ψ0,1)1,Ψ2}, (Ψ0,1)1).

Similarly, we follow the same analysis in the next cases.

1) For i = 1.

– If (Φ, 1)α = (Ψ, 0), then Φ0α = {Ψ0,Ψ2} and Φ2α = (Ψ2,1)1.

– If (Φ, 1)α = (Ψ, 2), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.

– If (Φ, 1)α = (Ψ, 3), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.

2) For i = 2.

– If (Φ, 2)α = (Ψ, 0), then Φ0α = {Ψ0, (Ψ
2)2} and Φ2α = (Ψ1)1.

– If (Φ, 2)α = (Ψ, 1), then Φ0α = {(Ψ0)0,Ψ2} and Φ2α = (Ψ1)1.

– If (Φ, 2)α = (Ψ, 3), then Φ0α = {(Ψ1,0)0,Ψ2} and Φ2α = Ψ1.

3) For i = 3.

– If (Φ, 3)α = (Ψ, 0), then Φ0α = {Ψ0, (Ψ
1,2)2} and Φ2α = Ψ1.

– If (Φ, 3)α = (Ψ, 1), then Φ0α = {(Ψ1,2)0, (Ψ
1,2)2} and Φ2α = Ψ1.

– If (Φ, 3)α = (Ψ, 2), then Φ0α = {(Ψ1,2)0,Ψ2} and Φ2α = (Ψ0,1)1.
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Observe from the cases above, that all the vertices {Ψ0,Ψ2}, {(Ψ0)0,Ψ2}, {Ψ0, (Ψ
2)2},

{(Ψ1,0)0,Ψ2}, {Ψ0, (Ψ
1,2)2}, {(Ψ1,2)0, (Ψ

1,2)2} and {(Ψ1,2)0,Ψ2} are vertices with degree

3 in Cham(M). So as all the faces (Ψ2,1)1, (Ψ0,1)1, (Ψ1)1 and Ψ1, correspond to 6-gons

in Cham(M). Thus, the vertex Φ0 has degree 3 and the face Φ2 is a 6-gon in M, with

Φ ∈ F(M). Furthermore, let Φw = ∆ ∈ F(M), with w ∈ Mon(M). Then we have that

(∆, i)α = (Φw, i)α = (Φ, i)w̄α = ((Φ, i)α)w̄ = (Ψ, j)w̄,

with w̄ ∈ Mon(Cham(M)). Recall that the conjugated subgroup Mai of Mon(Cham(M))

fixes the set Ai and permutes the sets Aj1 , Aj2 and Aj3 , with j1, j2, j3 ∈ {0, 1, 2, 3} \ {i},
where a0 = r2r1r0, a1 = r2r1, a2 = r2, and a3 = id. Since (∆, i) = (Φ, i)w̄, it follows that

w̄ ∈Mai , and henceforth (∆, i)α = (Ψ, j)w̄ ∈ Ajk , with j, jk ∈ {0, 1, 2, 3} \ {i}.
Thus, we follow with a similar analysis as the previous one for (∆, i)α = (Ψ, j)w̄, and

we conclude that the vertex ∆0 has degree 3 and the face ∆2 is a 6-gon inM. This latter

was for arbitrary ∆ ∈ F(M) and w ∈ Mon(M). Therefore, we have that each vertex in

V (M) has degree 3 and every face F (M) is a 6-gon. Consequently, the map M is an

equivelar map with Schäfli type {6, 3}.

By the Euler characteristic of a map, the surface of an equivelar map with Schläfli

type {6, 3} is either the torus or Klein bottle. In the following subsection we find the

number of flag-orbits of the chamfering of an equivelar map of type {6, 3}.

6.1 Chamfering of equivelar maps of type {6, 3}.
The maps of type {6, 3} are maps on the torus or on the Klein bottle. In [31] Hubard,

Orbanić, Pellicer and Weiss studied the symmetry types of equivelar maps in the torus. In

[58] Wilson shows that there are two kinds of maps of type {6, 3} in the Klein bottle, and

denotes them by {6, 3}|m,n| and {6, 3}\m,n\ respectively, where the two glide reflections of

these maps are on axes that are at distance a multiple of n and have length a multiple of

m.

An equivelar toroidal map of type {6, 3} is described as {6, 3}v1,v2 , where the linearly

independent vectors v1 and v2 are a linear combination of the basis {
√

3e1,
√

3
2
e1 + 3

2
e2},

with the origin in the centre of an hexagon in the {6, 3}-tessellation of the plane. Equivelar

toroids with Schläfli type {6, 3} are either regular, chiral, or have symmetry type 302 or

6Hp . In Figures 6.5–6.8 examples of equivelar toroids and their corresponding chamfering

maps are depicted.

Note that by chamfering a toroidal map M := {6, 3}v1,v2 we replace the edges of M
by the corresponding hexagonal faces in Cham(M). Thus, the centres of adjacent faces

of Cham(M) are at half distance than in the centres of adjacent hexagons of M. This
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{6, 3}(1,1),(2,−1)

{6, 3}(2,2),(4,−2)

Cham(M)

Cham(M)

{6, 3}(2,0),(0,2)

{6, 3}(4,0),(0,4)

Figure 6.5: Chamfering of regular toroids of type {6, 3}.

{6, 3}(2,1),(−1,3)

Cham(M)

{6, 3}(4,2),(−2,6)

Figure 6.6: Chamfering of chiral toroids of type {6, 3}.

{6, 3}(2,1),(3,−1)

{6, 3}(4,2),(6,−2)
Cham(M)

{6, 3}(2,0),(−1,2)

{6, 3}(4,0),(−2,4)

Cham(M)

Figure 6.7: Chamfering of 3-orbit toroids of type {6, 3}.
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{6, 3}(2,1),(2,0)

{6, 3}(4,2),(4,0)

Cham(M)

Figure 6.8: Chamfering of 3-orbit toroids of type {6, 3}.

implies that the chamfering map Cham(M) is the equivelar toroidal map {6, 3}2v1,2v2 .

Thus, we have the following lemma.

Lemma 6.2. LetM be an equivelar toroidal map of type {6, 3}. Then the symmetry type

graph T (Cham(M)) is isomorphic to T (M).

As what it concerns to equivelar maps of type {6, 3} in the Klein bottle. Following

[58], the two kinds of maps of type {6, 3} in the Klein bottle are denoted by {6, 3}|m,n|
and {6, 3}\m,n\ respectively, where m and n are measured respect to the centres of the

hexagons. The map in the Klein bottle, described as {6, 3}|m,n|, results by using two glide

reflections of length m
2

on axes of type (a) or (b), as in Figure 6.9, that are n
√

3
2

apart. And,

the map in the Klein bottle, described as {6, 3}\m,n\, results by using two glide reflections

of length m
√

3
2

on axes of type (c) or (d) as in Figure 6.9, that are n
2

apart. In both

cases, the generating glide reflections are symmetries of the regular hexagonal tessellation

of the plane. Since the glide reflection axes (a), (b), (c) and (d) are either parallel to the

(a) (b)
(c) (d)

Figure 6.9: Possible glide reflection axes in {6, 3}.

edges of the hexagons or cross the edges in their midpoint, by chamfering an equivelar

map M in the Klein bottle, of type either {6, 3}|m,n| or {6, 3}\m,n\, the distance between

both glide reflection axes and their length are the half than for those in M. This is, in

Cham(M), the values of m and n are the half as those forM. Therefore, the chamfering
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map Cham(M) is an equivelar map in the Klein bottle described as {6, 3}|2m,2n|, or as

{6, 3}\2m,2n\, with glide reflection axes of type (a) or (d), respectively.

Hence, we obtain the following lemma.

Lemma 6.3. If M is the toroidal map {6, 3}v1,v2 or a map in the Klein bottle of type

either {6, 3}|m,n|, or {6, 3}\m,n\, then Cham(M) is a map on the same surface of type

{6, 3}2v1,2v2, {6, 3}|2m,2n|, or {6, 3}\2m,2n\, respectively.

Following [58] we can see that maps {6, 3}|m,n| and {6, 3}\m,n\ have 3mn edges and

thereby 12mn flags. Moreover, the automorphism group of these maps have 4m elements.

Thus, the maps {6, 3}|m,n| and {6, 3}\m,n\ are 3n-orbit maps. Hence, Cham({6, 3}|m,n|) =

{6, 3}|2m,2n| and Cham({6, 3}\m,n\) = {6, 3}\2m,2n\ have 48mn flags and their respective

automorphism group have 8m elements. Therefore, {6, 3}|2m,2n| and {6, 3}\2m,2n\ are 6n-

orbit maps. In Figures 6.10 and 6.11 are depicted examples of maps of type {6, 3}|m,1|
and {6, 3}\m,1\, with m even and odd, and its chamfering maps. Note that both maps

of type {6, 3}|m,1| and {6, 3}\m,1\ have symmetry type 302, while their chamfering maps

{6, 3}|2m,2| and {6, 3}\2m,2\ have symmetry type 6Hp .

{6, 3}|2,1|

{6, 3}|4,2|

{6, 3}|3,1| {6, 3}|6,2|

Cham(M)

Cham(M)

Figure 6.10: Chamfering of a 3-orbit map of type {6, 3}|m,1| in the Klein bottle.

Corollary 6.1. If M is a k-orbit equivelar toroidal map of type {6, 3}, then Cham(M)

is a k-orbit map, with k = 1, 2, 3, 6. If M is a k-orbit equivelar map of type {6, 3} in the

Klein bottle, then 3|k and Cham(M) is a 2k-orbit map.
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{6, 3}\2,1\ {6, 3}\4,2\

{6, 3}\3,1\
{6, 3}\6,2\

Cham(M)

Cham(M)

Figure 6.11: Chamfering of a 3-orbit map of type {6, 3}\m,1\ in the Klein bottle.

6.2 Chamfering map of k-orbit maps

Putting our results together we see that lemma 6.1 implies that ifM is a k-orbit map

such that Cham(M) is not a 4k-orbit map, then it is of type {6, 3}. Hence, Corollary 6.1

implies the following theorem.

Theorem 6.1. Let M be a k-orbit map. Then, Cham(M) has either k, 2k or 4k flag-

orbits.

We denote as T (Cham(T ′)) the chamfering symmetry type graph with 4k vertices

that results from applying the algorithm in Figure 6.4 to the symmetry type graph T ′ of

a k-orbit map. (See for instance Figure 6.12). As a consequence of the above discussion

we have the following corollary.

Corollary 6.2. Let M be a k-orbit map with symmetry type either 1, 2, 302 or 6Hp, and

Cham(M) its chamfering map. Then the following holds.

(1) If M is a regular map, then Cham(M) is either regular of type {6, 3} (and hence

toroidal), or has symmetry type 4Dp.

(2) If M is a chiral map, then Cham(M) is either chiral of type {6, 3} (and hence

toroidal), or has symmetry type graph T (Cham(2)) with 8 vertices. (See Figure

6.12.)
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(3) If M has symmetry type 302, then Cham(M) is either a toroidal map of type {6, 3}
with symmetry type graph 302, or Cham(M) is a 6-orbit map in the Klein bottle and

has symmetry type graph 6Hp, or it has symmetry type graph T (Cham(302)) with 12

vertices. (See Figure 6.12.)

(4) IfM has symmetry type 6Hp, then Cham(M) is either a toroidal map of type {6, 3}
and has symmetry type graph 6Hp, or Cham(M) is a 12-orbit map in the Klein

bottle, or it has symmetry type graph T (Cham(6Hp)) with 24 vertices. (See Figure

6.12.)

T (Cham(2))

T (Cham(302)) T (Cham(6Hp
))

Figure 6.12: Symmetry type graphs of Cham(M), with M of type 2, 302 and 6Hp .

In [15] A. Deza, M. Deza and V. Grishukhin denote by Chamt(M) the t-times cham-

fering of M. It is straightforward to see that Chamt(M) of a k-orbit equivelar map M
on the torus is a k-orbit map described as {6, 3}2tv1,2tv2 . Similarly, Chamt(M) of a k-orbit

equivelar map M on the Klein bottle is a 2k-orbit map denoted either {6, 3}|2tm,2tn| or

{6, 3}\2tm,2tn\.
Finally, based on the results obtained in the previous section, we conclude with the

following theorem.

Theorem 6.2. Let M be a k-orbit map and Chamt(M) the t-times chamfering map of

M having s flag-orbits. Then one of the following holds.

1. s = 4tk, 2tk or k.

2. If s 6= 4tk, then χ(M) = 0 (M is on the torus or on the Klein bottle) and M is of

type {6, 3}.

3. If M is a toroidal map of type {6, 3} then s = k and k = 1, 2, 3, 6.
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4. If M is on the Klein bottle of type {6, 3} then s = 2tk and 3|k.

6.3 Dual of chamfering map

Regarding to the dual of the chamfering of a mapM, since the vertices of Cham(M)

are divided on those that have valency 3 and those with the same valency as those in

V (M), the faces of (Cham(M))∗ are triangles and n-gons, where n is the corresponding

valency of each vertex in V (M). The faces, corresponding to the elements of V (M)

in (Cham(M))∗ are surrounded by triangles, Moreover, as the vertices of (Cham(M))∗

correspond to the faces of Cham(M), then there are vertices in (Cham(M))∗ of valency

6, those corresponding to the elements in E(M), and others of valency equal to the length

of the elements in F (M). In Figure 6.13 is depicted the dual of the chamfering of the

dodecahedron.

Figure 6.13: Chamfering of the dodecahedron (left) and its dual (right).

Once more, recall that the bijection δ : Mon(M)→ Mon(M∗) induces a permutation

on the edges of GM sending edges of colour i = 0, 1, 2 to edges of colour 2− i. Then, the

following proposition is a consequence from Proposition 6.1.

Proposition 6.2. The flag graph G(Cham(M))∗, of the dual of the chamfering map (Cham(M))∗

of a mapM, can be quotient into a graph isomorphic to the self-dual symmetry type graph

4Dp.
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Truncation operation on maps

Another interesting operation is the truncation of a map (see [45, 49]). The medial

operation can be understood as the truncation of a map up to the midpoint of its edges.

Moreover, when the truncation goes further than the midpoint on the edges of the map

M, then the obtained map is known as the leapfrog map ofM, [18]. If the vertices ofM
become the faces of the truncated map, then the resulting map is the dual map of M.

For instance, by truncating regular polyhedra, we can obtain some of the 13 Archimedean

solids as is discussed in [7] and [52].

The truncation operation consist on replace the vertices of a map by faces, leaving

the faces with twice the number of vertices than the original ones. An example is the

truncated icosahedron, shown in Figure 7.1, it has twelve pentagonal faces and twenty

Figure 7.1: Icosahedron (left) and truncated icosahedron (right).

hexagonal faces that correspond to the vertices and faces of the icosahedron, respectively.

Hence, there is a correspondence between the set of faces of the truncated map Tr(M) of

M with the set of vertices and faces of M, i.e

F (Tr(M)) = V (M) ∪ F (M).

91
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Furthermore, for each edge of M there are exactly two vertices of Tr(M), two of these

vertices have an edge joining them if either both belong to a common edge ofM or if the

corresponding edges in M share a vertex and belong to the same face. Then, the sets of

edges and vertices of Tr(M) are

E(Tr(M)) = E(M) ∪ {{Φ0,Φ2}|Φ ∈ F(M)} and

V (Tr(M)) = {{Φ0,Φ1}|Φ ∈ F(M)},

respectively. Each vertex of Tr(M) has valency 3 and therefore, the truncated map Tr(M)

contains 2|E(M)| vertices and 3|E(M)| edges.

In Figure 7.2 is depicted how every flag in F(M) is divided into three different flags

of the truncated map Tr(M). This is, for each flag

Φ2

Φ1
Φ0

Figure 7.2: The three flags of F(Tr(M)) corresponding to the flag Φ = (Φ0,Φ1,Φ2) ∈ F(M).

Φ = (Φ0,Φ1,Φ2) ∈ F(M), there are three flags: (Φ, 0) := ({Φ0,Φ1}, {Φ0,Φ2},Φ0),

(Φ, 1) := ({Φ0,Φ1},Φ1,Φ2) and (Φ, 2) := ({Φ0,Φ1}, {Φ0,Φ2},Φ2),

corresponding to Φ in F(Tr(M)). The adjacencies between the flags in F(Tr(M)) are

given as follows.

(Φ, 0)0 = (Φs1 , 0), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φ, 2);

(Φ, 1)0 = (Φs0 , 1), (Φ, 1)1 = (Φ, 2), (Φ, 1)2 = (Φs2 , 1);

(Φ, 2)0 = (Φs1 , 2), (Φ, 2)1 = (Φ, 1), (Φ, 2)2 = (Φ, 0),

where s0, s1 and s2 are the distinguished generators of Mon(M). Let t0, t1 and t2 be the

distinguished generators of Mon(Tr(M)), since all the vertices of Tr(M) have valency 3,

then (t1t2)3 = id. Consequently, in Figure 7.3 is presented an algorithm to construct the

flag graph of Tr(M) from GM. Such algorithm induces a partition (A0,A1,A2) on the

vertices of GTr(M), where Ai := {(Φ, i)|Φ ∈ F(M)} with i = 0, 1, 2, and therefore we have

Proposition 7.1.
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0
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2

1
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2

1

0

2

1

Figure 7.3: Any local representation of a flag, in the left. The result under the medial operation,
locally obtained, in the right.

Proposition 7.1. The flag graph GTr(M), of the truncation map Tr(M) of a mapM, can

be quotient into a graph isomorphic to the symmetry type graph 30.

Proof. Let Ai = {(Φ, i)|Φ ∈ F(M)}, with i = 0, 1, 2. Then, F(Tr(M)) = A0 ∪ A1 ∪ A2

and Ai ∩ Aj = ∅, with i 6= j and i, j ∈ {0, 1, 2}. Hence, (A0,A1,A2) is a partition of the

set of flags F(Tr(M)). Based on Figure 7.3, it is straightforward to see that the quotient

of GTr(M) over such partition, is isomorphic to the symmetry type graph of a map with

symmetry type 30 (see Figure 3.3).

7.1 Truncation of k-orbit maps

In [45], in order to characterize the symmetry types of all truncated maps of k-orbit

maps up to k ≤ 3, using coset enumeration ([9, Chapter 2]), Orbanić, Pellicer and Weiss

showed that the truncated map Tr(M) of a k-orbit mapM is either a k-orbit, a 3k
2

-orbit

(with k even) or a 3k-orbit map. The authors also presented examples of when any of

this cases is possible, some of these examples are depicted in Figures 7.4–7.6.

With regard to this result, using once more the coset enumeration, the authors in

[45] show that in particular if a k-orbit map M which truncation map Tr(M) is either a
3k
2

-orbit or a k-orbit map, then there is a bi-partition on the vertices of GM in such way

that GM can be quotient into a graph isomorphic to the symmetry type graph 201.
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Tr({4, 4})

Figure 7.4: A 3-orbit map (right), obtained by truncation of a regular map of type {4, 4} (left).

{3, 6}(2,0),(0,2)

{3, 6}(2,2),(4,−2)

Tr(M)

{6, 3}(2,2),(4,−2)

Tr(M)

{6, 3}(6,0),(0,6)

Figure 7.5: Regular maps of type {6, 3} (right), obtained by truncation of regular maps of type
{3, 6} (left).

(a) (b)
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D
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B

H

G

FE

D

C

B

A

G

H

Figure 7.6: A map (in dotted lines), with symmetry type 30, obtained by truncation of a regular
map (a) or of a 2-orbit map (b), [45].
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Recall that ifM is a regular map, the distinguished generators of Aut(M) with respect

to a base flag Φ ∈ F(M) are involutions ρ0, ρ1, ρ2 such that Φρi = Φi (Section 3.2). In

[45], it was shown that for a regular map M and the subgroup G = 〈ρ0, ρ1, ρ2ρ1ρ2〉 of

the automorphism group Aut(M), the truncation map Tr(M) is regular if and only if

[Aut(M) : G] = 2 and there exist an automorphism τ ∈ Aut(G) interchanging ρ0 and ρ1

and fixing ρ2ρ1ρ2.

By Proposition 7.1, we have that there exists a partition (A0,A1,A2) of the vertices

of the flag graph GTr(M) of the truncation map Tr(M) in such way that for each Υ ∈
A0, the vertices Υ2 and Υ2,1 are elements in A2 and A1, respectively. Then, the flags

Υ,Υ2,Υ2,1 ∈ F(Tr(M)) correspond to a flag ΦΥ ∈ F(M) where the face Υ2 is an element

of V (M), [45].

Finally the authors, in [45], conclude that the flag graph GTr(M) can be quotient in

to a graph isomorphic to the symmetry type graph 30 under the action of a subgroup

H ≤ Aut(Tr(M)), of the automorphism group of Tr(M), if and only if M is a regular

map.

In what follows, supported by Proposition 7.1 and defining the flags in F(M) as flags

ΦΥ := {Υ,Υ2,Υ2,1} where Υ2 ∈ V (M) and Υ,Υ2,Υ2,1 ∈ F(Tr(M)), as it was described

above, we discuss the results of Orbanić, Pellicer and Weiss on truncation of regular,

2-orbit and 3-orbits maps. Moreover, we show results on the truncation of k-orbit maps,

with k = 4, . . . , 7, 9. Due to the large number of cases for k = 8, the truncation of 8-orbit

maps is left on aside.

7.1.1 Truncation symmetry type graphs

As the vertices of the map Tr(M) have valency three, there are exactly six flags of

F(Tr(M)) around each vertex in Tr(M). Recall that the vertices of the map Tr(M) are

identified with the orbits of the subgroup 〈t1, t2〉 on F(Tr(M)). Since the automorphism

group of a map partitions its set of flags into orbits of the same size, then Lemma 3.2

implies that the 2-factors coloured by 1 and 2 in the symmetry type graph T (Tr(M))

must be as those in Figure 7.7.

Truncation of regular, 2-orbit and 3-orbit maps.

As it was said previously, if M is a regular map, then Tr(M) is either regular or a

3-orbit map, which has symmetry type graph 30. On another hand, if M is a 2-orbit

or a 3-orbit map, Orbanić, Pellicer and Weiss conclude with the following results on the

truncation map of M, [45].
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(1) (2) (3) (4)

Figure 7.7: Possible quotients of 1-2 coloured 6-cycles of GTr(M).

Proposition 7.2. [45] If the truncation Tr(M) of a 2-orbit map M is a 2-orbit map,

then one of the following holds

(i) M and Tr(M) are of type 2,

(ii) M is of type 201 and Tr(M) is of type 20, or

(iii) M is of type 22 and Tr(M) is of type 212.

Proposition 7.3. [45] If the truncation Tr(M) of a 2-orbit map is a 3-orbit map, then

M is of type 201 and Tr(M) is of type 30.

Proposition 7.4. [45] If the truncation Tr(M) of a 3-orbit map is a 3-orbit map, then

M and Tr(M) are of type 302.

In other words, ifM is a regular, a 2-orbit or a 3-orbit map, and Tr(M) has either 1,

2 or 3 flag-orbits, then the symmetry type of Tr(M) is either 1, 2, 20, 212, 30 or 302. These

are in fact, the only possible symmetry type graphs with 1, 2 and 3 vertices, consistent

with the (1,2) 2-factors in Figure 7.7.

1 202 212

30 302

A
A

A
A

A
A

B
B

B

B B
C

C

Figure 7.8: Symmetry type graphs with at most 3 vertices and (1,2) 2-factors as in Figure 7.7.



CHAPTER 7. TRUNCATION OPERATION ON MAPS 97

Orbanić, Pellicer and Weiss prove Propositions 7.2, 7.3 and 7.4 based on the following

facts.

(i) All the vertices of the map Tr(M) have valency 3.

(ii) The vertex set of M is a proper subset of the set of faces of Tr(M).

(iii) Each flag ΦΥ ∈ F(M) ofM is divided in exactly three flags (ΦΥ, 0) =: Υ, (ΦΥ, 2) =:

Υ2, (ΦΥ, 1) =: Υ2,1 ∈ F(Tr(M)) of Tr(M), where Υ2 ∈ V (M). (Figures 7.2 and

7.3).

Then, to prove each proposition above they proceed by using local arrangements to

the flags in the truncated map Tr(M), by assembling flags Υ,Υ2,Υ2,1,∈ F(Tr(M)) into

a new flag ΦΥ ∈ F(M), where the face Υ2 shall represent an element in V (M). Based

on such local flag-arrangements of F(Tr(M)), used in [45], we proof Propositions 7.2–7.4

with a similar method that follows the notation on this work, as is presented next.

Suppose that the truncation map Tr(M), of a k-orbit map M, has either k or 3k
2

orbits in F(Tr(M)), with k = 2, 3. Then, the symmetry type graph T (Tr(M)) must be

one of the shown in Figure 7.8 (as are the only ones with the (1,2) 2-factors as in Figure

7.7). Consider the partition (A0,A1,A2) of the set F(Tr(M)) and let Υ ∈ A0, Υ2 ∈ A2

and Υ2,1 ∈ A1, be such that Υ2 ∈ V (M). Assume that the flag Υ ∈ A0 represents a

particular orbit of the flags of Tr(M), A say. Let i0, i1, . . . , in be an edge-coloured walk

between the vertex A and any other vertex, B say, in the corresponding symmetry type

graph T (Tr(M)). Thus, we shall choose the flag Υi0,i1,...,in as the representative of the

orbit B of F(Tr(M)). Proceeding in a similar fashion, we can determine to which orbit

of F(Tr(M)) belong the other flags in each of the partitions A0, A1 and A2. Finally,

we proceed to determine the symmetry type of M as follows. Consider the flag ΦΥ :=

{Υ,Υ2,Υ2,1} ∈ F(M) as the base flag of M representing one of the k flag-orbits of

M. The number of orbits of the map M is determined by the different types of flags

obtained in the process. Observe if any of its adjacent flags (ΦΥ)0 := ΦΥ2,1,0,1,2 , (ΦΥ)1 :=

ΦΥ1 , (ΦΥ)2 := ΦΥ0 ∈ F(M) belong or not to the same orbit of F(M) than ΦΥ, so we can

identify which particular flag-orbit of M is represented by ΦΥ. Later, find which other

flags in F(M) belong to different flag-orbits than ΦΥ, and display how the corresponding

orbits of these flags are related to each other. We shall refer to this method as the

“untruncation” method.

To verify Proposition 7.2 we first note that ifM′ is a 2-orbit map with all its vertices

with valency 3, since maps in classes 21, 22, 202 and 201 have even vertex-valency, the

symmetry type graph T (M′) ofM′ is of type 2, 20 or 212 (Figure 7.8). LetM′ := Tr(M)

be the truncation of another mapM, and consider the partition (A0,A1,A2) of the flags

of Tr(M) as was said previously. Then, we will apply the “untruncation” method, in order
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to construct the map M and find out its symmetry type. Let Υ ∈ A0 be a flag in the

map Tr(M). Note that the maps of types 2, 20 and 212 are transitive on their faces; that

is, every face of such maps contains flags on the two orbits of F(Tr(M)). Hence, we can

assume that the face Υ2 of any flag Υ ∈ A0 is an element in the set V (M). In particular,

suppose that the flag Υ ∈ A0 is in the orbit A and consider the i-adjacent flag Υi which

is in the orbit B, where i ∈ {0, 1}. In such way, we obtain a pair of representative flags

of M, as those depicted in the Figure 7.9, as is explained in the next two cases.

A

B

A B

A

B

A

AA BB

B

(a) (b)

Υ2

Υ2 Υ2

Figure 7.9: Representative flags of a 2-orbit map M, as assembled flags from the truncation
map Tr(M), where in (a) Tr(M) has symmetry type 2 or 20, and in (b) Tr(M) has
symmetry type 212. The element Υ2 ∈ V (M) corresponds to the face of the base
flag Υ ∈ F(Tr(M)).

(a) If a map Tr(M) has symmetry type 2 or 20, with flag-orbits A and B, then the two

flags Υ ∈ A0 and Υ2,1 ∈ A1 belong to the orbit A, while the flag Υ2 ∈ A2 belongs

to the orbit B. Thus, when we construct the map M, the flags ΦῩ ∈ F(M) in the

same orbit as ΦΥ ∈ F(M) must have two flags Ῡ ∈ A0 and Ῡ2,1 ∈
A1 in the orbit A, and the flag Ῡ2 ∈ A2 in the orbit B. Moreover, in both symmetry

type maps, the flags Υ1 ∈ A0 and Υ1,2,1 ∈ A2 are flags in the flag-orbit B in Tr(M),

and the flag Υ0,2 ∈ A2 is in the flag-orbit A. Hence, the flag ΦΥ1 ∈ F(M) represents

a different orbit of the flags in F(M) than ΦΥ. Therefore, it follows that the map

M is a 2-orbit map with symmetry type graph either 2 or 201. Inducing (i) and (ii)

in Proposition 7.2, respectively.

(b) On another hand, if Tr(M) is of type 212, with flag-orbits A and B, the flags

ΦῩ ∈ F(M) in the same orbit as the representative flag ΦΥ ∈ F(M) have all flags

Ῡ ∈ A0, Ῡ2 ∈ A2 and Ῡ2,1 ∈ A1 in the orbit A. While other flags in F(M) as

ΦΥ0 , correspond to the other orbit of the flags in F(M), with all the flags Υ0 ∈ A0,

Υ0,2 ∈ A2 and Υ0,2,1 ∈ A1 in the flag-orbit B. Inducing thatM is a 2-orbit map of

symmetry type 22. Therefore, we obtain (iii) in Proposition 7.2.

Similarly, if Tr(M) is a 3-orbit map. Then, Tr(M) has symmetry type either 30 or

302. Observe that the maps of type 302 are face-transitive, while the maps of type 30
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are not face transitive. Hence, if Tr(M) is of type 30, the faces corresponding to the set

V (M) might contain all flags in one orbit (C say), or flags in two orbits (A and B say);

depending on which of both type of faces are the elements of V (M) in Tr(M). Only one

choice of these two later will produce a 2-orbit map, as we see next, and show Proposition

7.3.

Let Tr(M) be the truncation map of a map M. Suppose that Tr(M) has symmetry

type 30, and consider the partition (A0,A1,A2) of the set F(Tr(M)). Let C be the orbit

of F(Tr(M)) with all its flags in the same face-orbit. If a flag Υ ∈ F(Tr(M)) of the

partition A0 belongs to the orbit C, then it follows that the flags Υ2 ∈ A2 and Υ2,1

are in orbits B and A, respectively. Then, if we assume that the face Υ2 is an element

in V (M), following the “untruncation” method we obtain that the flag ΦΥ ∈ F(M)

represents a unique type of flags in M. That is, the map M is a regular map. On

another hand, if the flag Υ ∈ A0 belongs to any of the other two flag-orbits, distinct than

C, then the face Υ2 contains flags in both orbits A and B. Hence, we obtain two different

types of flags, represented by ΦΥ and ΦΥ1 := (ΦΥ)2. That is, for each flag Υ ∈ A0 that

belongs to the orbit A, say, the flags Υ2 ∈ A2 and Υ2,1 ∈ A1 are in the orbits A and

B, respectively. Consequently, Υ1 ∈ A0 belongs to the orbit B, and the flags Υ1,2 ∈ A2

and Υ1,2,1 ∈ A1 are both in the orbit C (see Figure 7.10 (a)). Therefore, the map M is

B

C
C B

A

A A

A
BC

C

B

C
B

A

(a) (b)

Υ2 Υ2

Figure 7.10: Representative flags of a (a) 2-orbit map and (b) 3-orbit map M, as assembled
flags from Tr(M), where in (a) Tr(M) has symmetry type 30, and in (b) Tr(M)
has symmetry type 302. The element Υ2 ∈ V (M) corresponds to the face of the
base flag Υ ∈ F(Tr(M)).

a 2-orbit map with symmetry type 201, implying Proposition 7.3. Furthermore, we can

proceed similarly as when we verified Proposition 7.2, with the flags of a 3-orbit face-

transitive map Tr(M) with symmetry type 302 and obtain three different flags as those

in Figure 7.10 (b), following Proposition 7.4.

If Tr(M) is a 3k-orbit map, applying the algorithm presented in the Figure 7.3 to

the symmetry type graph T (M) with k vertices, we obtain straightforward the symmetry

type graph of Tr(M) with 3k vertices, and we will refer to this as the truncated symmetry

type graph of T (M). For instance, the truncated symmetry type graphs with 6 vertices,

that correspond to the seven symmetry type graphs of maps with 2 vertices are depicted

in Figure 7.11.
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6H = T (Tr(202))

6Nd = T (Tr(2)) 6G = T (Tr(20)) 6Md
= T (Tr(22))

6Od = T (Tr(21)) 6B = T (Tr(201)) 6Pd = T (Tr(212))
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Figure 7.11: Truncation symmetry type graphs with 6 vertices, of the seven 2-orbit symmetry
type graphs.

Now we proceed to our first goal: to find the possible symmetry type graphs with k

and 3k
2

vertices, of maps that correspond to truncation of a k-orbit map M, with k =

4, 5, 6, 7, 9. Extending the results of [45], for the truncation of these k-orbit maps. To find

the corresponding symmetry type of the mapM, we use the same “untruncation” method

used previously on the flags of Tr(M), assembling the flags Υ,Υ2,Υ2,1 ∈ F(Tr(M))

defining a new flag ΦΥ ∈ F(M), under the appropriate partition (A0,A1,A2) of the flags

in F(Tr(M)) according to the Proposition 7.1.

Truncation of 4-orbit maps.

The truncation map Tr(M) of a 4-orbit map M has either 4, 6 or 12 orbits on its

flags. Consider a 4-orbit map M and suppose that the map Tr(M) also has 4 orbits

on its flags. Then, by a proper combination of the (1,2) 2-factors shown in Figure 7.7,

into a symmetry type graph with 4 vertices (and looking at the twenty two symmetry

type graphs with 4 vertices, in Figures 3.5 and 3.6), it can be seen that Tr(M) has either

symmetry type 4Dp , 4D or 4Gd
(see Figure 7.12). First we study the possible case when

the truncation map Tr(M) has symmetry type 4Dp . Later, we describe the case when the

map 4-orbit Tr(M) is face-transitive with symmetry type either 4D or 4Gd
.
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4Dp 4D 4Gd

A
B

C

D

A
B

C

D

AB

C D

Figure 7.12: Possible symmetry type graphs of the 4-orbit maps that correspond to the trunca-
tion of another map.

Let (A0,A1,A2) be the partition of the set of flags of the map Tr(M) with symmetry

type graph 4Dp . Even thought that the maps with the symmetry type 4Dp have two

orbits on their faces, where one type of faces contains flags in three orbits of flags and the

other type contains all its flags in the fourth flag-orbit, we find exactly four types of flags

representing flags of the mapM, as those shown in Figure 7.13, in the following way. Let

B
A

A

C

C
B

D

D

DA

B

CΥ2

Figure 7.13: Representative flags ΦΥ,ΦΥ2,1,0,1,2 ,ΦΥ2,1,0,1,2,0 and ΦΥ2,1,0,1,2,0,1 in F(M), as assem-
bled flags from the truncation map Tr(M) with symmetry type 4Dp . The element
Υ2 ∈ V (M) corresponds to the face of the base flag Υ ∈ F(Tr(M)).

A be the orbit of F(Tr(M)) such that all its flags correspond to the same type of face in

Tr(M) (Figure 7.12). If a flag Υ ∈ A0 belongs to the flag-orbit A, then the flags Υ2 ∈ A2

and Υ2,1 ∈ A1 are in the orbits B and C, respectively. Suppose that the face Υ2 is an

element in V (M), and consider the base flag ΦΥ ∈ F(M) in the map M. On one hand,

observe that the flags (ΦΥ)1 =: ΦΥ0 and (ΦΥ)2 =: ΦΥ1 are flags of the same type as ΦΥ

in M. While, on the other hand, the flag

(ΦΥ)0 =: ΦΥ2,1,0,1,2 = {Υ2,1,0,1,2,Υ2,1,0,1,Υ2,1,0}

is a different type of flag than ΦΥ, where the flags Υ2,1,0,1,2 ∈ A0, Υ2,1,0,1 ∈ A2 and

Υ2,1,0 ∈ A1 are all in the orbit D. Moreover, the face (Υ2,1,0,1,2)2 is an element in V (M).

Furthermore, the flag (ΦΥ)0,2 is of the same type as (ΦΥ)0, but the flag

(ΦΥ)0,1 =: ΦΥ2,1,0,1,2,0 = {Υ2,1,0,1,2,0,Υ2,1,0,1,0,Υ2,1,0,1,0,1}

is a different type of flag than ΦΥ and (ΦΥ)0 in the map M. Obtaining a the third type

of flag in M, composed with two flags Υ2,1,0,1,2,0,Υ2,1,0,1,0 ∈ F(Tr(M)) in the flag-orbit

C and one flag Υ2,1,0,1,0,1 ∈ F(Tr(M)) in the orbit B in Tr(M). Thus, we proceed in a
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similar fashion, and find that the fourth type of flags in M, represented by the flag

(ΦΥ)0,1,2 =: ΦΥ2,1,0,1,2,0,1 = {Υ2,1,0,1,2,0,1,Υ2,1,0,1,2,0,1,2,Υ2,1,0,1,2,0,1,2,1},
with the flag Υ2,1,0,1,2,0,1 in the flag-orbit B and the flags Υ2,1,0,1,2,0,1,2 and Υ2,1,0,1,2,0,1,2,1

in the flag-orbit A in Tr(M). Also, we note that the face (Υ2,1,0,1,2)2 ∈ V (M) has all

its flags in the three orbits B, C and D in Tr(M). This later implies that for any flag

Υ ∈ A0 in F(Tr(M)), we can define the face Υ2 as an element in V (M), no matter

in which flag-orbit of Tr(M) is contained the flag Υ. Finally, we conclude that M is a

4-orbit map also with symmetry type 4Dp .

In case that the map Tr(M) has symmetry type 4D or 4Gd
, we observe that Tr(M)

is a face-transitive map. That is, every face in Tr(M) contains flags in the four orbits in

F(Tr(M)). Let (A0,A1,A2) be a proper partition on the set F(Tr(M)), where for any

Υ ∈ A0, Υ2 ∈ A2 and Υ2,1 ∈ A1. Recall that, in previous cases, where the map Tr(M) is

face-transitive, given any flag Υ ∈ A0 we can define the face Υ2 as an element in V (M).

Hence, following the “untruncation” method, we find the corresponding symmetry type

of the map M, whenever Tr(M) has symmetry type either 4D or 4Gd
, as follows.

Suppose that Tr(M) is a face-transitive map of type 4D. Let Υ ∈ A0 be a flag in the

flag-orbit A (Figure 7.12), where Υ2 ∈ V (M). Then, the flags Υ2 ∈ A2 and Υ2,1 ∈ A1

belong to the orbits B and C in F(Tr(M)). Inducing the representative flag ΦΥ ∈ F(M)

as that in the very left of Figure 7.14 (a). Where the other three different types of flags,

C

C
BA

A

B

D
D

DC
B

A

(a)

C

D
CD

C

D

B
A

BA
B

A

(b)

Υ2 Υ2

Figure 7.14: Representative flags of a 4-orbit mapM, as assembled flags from the map Tr(M),
where in (a) Tr(M) has symmetry type 4D, and in (b) Tr(M) has symmetry
type 4Gd

. The element Υ2 ∈ V (M) corresponds to the face of the base flag
Υ ∈ F(Tr(M)).

representing the other the orbits in F(M) are described as

• ΦΥ0 , with the flag Υ0 ∈ A0 in the orbit B and the flags Υ0,2 ∈ A2 and Υ0,2,1 ∈ A1

in the orbit A;

• ΦΥ0,1 , with the flags Υ0,1 ∈ A0 and Υ0,1,2 ∈ A2 in the orbit C and the flag Υ0,1,2,1 ∈
A1 in the orbit B; and

• ΦΥ0,1,0 , with the flags Υ0,1,0 ∈ A0, Υ0,1,0,2 ∈ A2 and the flag Υ0,1,0,2,1 ∈ A1 in the

orbit D.
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Proceed in similar way with the flags of a face-transitive map Tr(M) of type 4Gd
. Suppose

that for any flag Υ ∈ A0 that belong to the flag-orbit A, the face Υ2 ∈ V (M). Then,

the flags Υ2,1 ∈ A1 and Υ2 ∈ A2 belong to the flag-orbits A and B, respectively (Figure

7.12). Similarly as in the previous case, we can find four different types of flags produced

by the “untruncation” method on the flags of Tr(M). These latter are as those in Figure

7.14 (b). Where the representative flags of the orbits in F(M) are ΦΥ;

• ΦΥ0 , with the flags Υ0 ∈ A0 and Υ0,2,1 ∈ A1 are in the orbit D and the flag Υ0,2 ∈ A2

in the orbit C;

• ΦΥ0,1 , with the flags Υ0,1 ∈ A0 and Υ0,1,2,1 ∈ A1 in the orbit C and the flag

Υ0,1,2 ∈ A2 in the orbit D; and

• ΦΥ0,1,0 , with the flags Υ0,1,0 ∈ A0 and Υ0,1,0,2,1 ∈ A1 in the orbit B and the flag

Υ0,1,0,2 ∈ A2 in the orbit A.

Therefore, if we assume that Tr(M) andM are 4-orbit maps, then we obtain the following

proposition.

Proposition 7.5. If the truncation Tr(M) of a 4-orbit map M is a 4-orbit map, then

exactly one of the following holds.

(i) M and Tr(M) are of type 4Dp,

(ii) M is of type 4E and Tr(M) is of type 4D, or

(iii) M is of type 4G and Tr(M) is of type 4Gd
.

Given a 4-orbit map M, its truncated map Tr(M) might be a 6-orbit map. To find

the possible symmetry types of maps with six orbits on its flags that would correspond to

the symmetry type of a map Tr(M), whenM is a 4-orbit map, it is necessary to observe

the following.

The symmetry type graph of a 6-orbit map Tr(M), constructed by a proper combi-

nation of the (1,2) 2-factors shown in Figure 7.7, contains either exactly one copy of the

2-factor (4), two copies of the 2-factor (3), or exactly one copy of the 2-factors (1), (2) and

(3); joined consistently with the (0, 2) 2-factors in Figure 3.1. In fact, there are sixteen

symmetry type graphs with six vertices that satisfy any of the three later conditions,

depicted in Figures 7.11, 7.15 and 7.16. Furthermore. looking at the symmetry type

graphs with 6 vertices in Figures 7.11, 7.15 and 7.16, we deduce the following observations

on the sixteen symmetry types, that follow the latter paragraph.
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Figure 7.15: Possible symmetry type graphs of 6-orbit vertex-transitive maps Tr(M), whereM
is a 6-orbit map.
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Figure 7.16: Possible symmetry type graphs of 6-orbit maps Tr(M) which are not vertex-
transitive, derived from 6-orbit maps M.



CHAPTER 7. TRUNCATION OPERATION ON MAPS 105

i) 6B, has three face-orbits, each containing 2 flag-orbits (this corresponds to the

truncation symmetry type graph of 201);

ii) 6Pd
, has three face-orbits, one with 4 flag-orbits and the others with one flag-orbit

each;

iii) 6G, 6H , 6Md
, 6Nd

, 6Od
, have two face-orbits, one with 4 flag-orbits and the other

with 2 flag-orbits;

iv) 6Hp , has two face-orbits, both with 3 flag-orbits;

v) 6Jd , has two face-orbits, one with 5 flag-orbits and the other with one flag-orbit; and

vi) 6Bp 6Fd
, 6Gp , 6Mdp

, 6Ndp
, 6Odp

, 6Pdp
, that are transitive on their faces.

As we will see next, the cases ii) and iii) above, are the only possible cases to be

consider in manner to find when is that from a 4-orbit map M the truncation map

Tr(M) is a 6-orbit map. The other cases will be considered when we study the truncation

of 6-orbit maps. That is, suppose now that the map Tr(M) has symmetry type either 6G,

6H , 6Md
, 6Nd

, 6Od
, or 6Pd

(Figure 7.11). Then, consider the face-orbit in Tr(M) containing

four flag-orbits, A, B, E and F (Figure 7.11), and continue as follows.

(a) Let Tr(M) be a 6-orbit map with symmetry type graph 6G, 6Nd
or 6Od

, and

(A0,A1,A2) a partition of its set of flags F(Tr(M)). If we suppose that there is a flag

Υ ∈ A0 in the orbit A of F(Tr(M)), then the flags Υ2 ∈ A2, and Υ2,1 ∈ A1 belong to

the orbits F and E, respectively. These three later flags induce a flag ΦΥ ∈ F(M),

with Υ2 ∈ V (M). Consequently, it can be seen that the flag (ΦΥ)2 =: ΦΥ1 represent

a distinct type of flags than ΦΥ, since Υ1 ∈ A0, Υ1,2 ∈ A2 and Υ1,2,1 ∈ A1 belong to

the flag-orbits B, C and D in Tr(M), respectively. These two flags, ΦΥ and ΦΥ1 ,

are as the first two flags shown in Figure 7.17 (a). Similarly, we can obtain the

other two types of flags inM, represented by the flags (ΦΥ)2,1 and (ΦΥ)2,1,2. Thus,

we deduce the corresponding symmetry type of the 4-orbit map M.

(b) Similarly, for a 6-orbit map Tr(M) with symmetry type graph 6H , 6Md
or 6Pd

, and

a partition (A0,A1,A2) of its set of flags F(Tr(M)). If there is a flag Υ ∈ A0

that belongs to the orbit A of F(Tr(M)), then the flags Υ2 ∈ A2, and Υ2,1 ∈ A1

are flags in the orbits A and B, respectively. Hence, the induced flag ΦΥ ∈ F(M)

corresponds to the first type of flags shown in Figure 7.17 (b), with Υ2 ∈ V (M).

Moreover, the flag (ΦΥ)2 =: ΦΥ1 is composed by a flag Υ1 ∈ A0 in the flag orbit B

and two flags Υ1,2 ∈ A2 and Υ1,2,1 ∈ A1 in the orbit C in Tr(M) is of different type

than ΦΥ ∈ F(M). Furthermore, the flags (ΦΥ)2,1 and (ΦΥ)2,1,2 represent other two

different types of flags inM. In such way, we complete the list of different types of

flag in M, deducing that M is a 4-orbit map.



106 7.1. TRUNCATION OF K-ORBIT MAPS

A

F

E F

A

BB

C

D E

D

C

A

A

B B

C

C E

D

D F

F

E

(a)

(b)

Υ2 Υ2Υ2 Υ2

Υ2 Υ2 Υ2 Υ2

Figure 7.17: Representative flags of 4-orbit maps, as assembled flags in a 6-orbit map Tr(M),
where in (a) Tr(M) has symmetry type graph 6G, 6Nd

or 6Od
, and in (b) Tr(M)

has symmetry type graph 6H , 6Md
or 6Pd

. The element Υ2 ∈ V (M) corresponds
to face of the base flag Υ ∈ F(Tr(M)).

Consequently, we obtain the following proposition.

Proposition 7.6. If the truncation Tr(M) of a 4-orbit map M is a 6-orbit map, then

exactly one of the following holds.

(i) M is of type 4B and Tr(M) are of type 6Pd
,

(ii) M is of type 4C and Tr(M) is of type 6Od
,

(iii) M is of type 4G and Tr(M) is either of type 6Nd
or of type 6Md

, or

(iv) M is of type 4H and Tr(M) is either of type 6G or of type 6H .

To conclude with the truncation of 4-orbit maps, we shall point out that there are

twenty two truncated symmetry type graphs with 12 vertices, corresponding to the twenty

two symmetry type graphs with four vertices, determined by applying the algorithm in

Figure 7.3 to each.

Truncation of 5-orbit maps.

Similarly to the previous section, ifM is a 5-orbit map, its truncation map Tr(M) is

either a 5-orbit or a 15-orbit map.

Notice that out of the thirteen different symmetry type graphs of 5-orbit maps, (see

Figure 3.7), the only possible combination of the (1,2) 2-factors with 2 and 3 vertices in

Figure 7.7 is the symmetry type 5Bd
(Figure 7.18). This is, a 5-orbit map Tr(M) is the

truncation of a 5-orbit map M, if Tr(M) is of type 5Bd
.
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5Bd

AB

C ED

Figure 7.18: Only possible symmetry type graph of a 5-orbit map, corresponding to the trunca-
tion of another 5-orbit map.

Let (A0,A1,A2) be the partition on the flags of a map Tr(M) with symmetry type

graph 5Bd
, such that the flags Υ ∈ A0, Υ2 ∈ A2 and Υ2,1 ∈ A1 induce the flag ΦΥ ∈ F(M).

Clearly, the maps of type 5Bd
are face-transitive. Then, without lost of generality we can

assume that the flag Υ ∈ A0 belongs to the flag-orbit A of Tr(M), and define the face Υ2

as an element in V (M). Observe that the flags Υ2 ∈ A2 and Υ2,1 ∈ A1 are flags in the

orbits B and A, respectively. Hence, ΦΥ ∈ F(M) represents one type of the flags of M.

Moreover, the flags ΦΥ1 ,ΦΥ1,0 ,ΦΥ0 ,ΦΥ0,1 ∈ F(M), represent the other four types of flags

in F(M), with Υ1, Υ1,0, Υ0 and Υ0,1 flags in the orbits B, C, D and E of F(Tr(M)),

respectively, see Figure 7.19. Obtaining the following Proposition.

A

BA

B

A B
D

C C

E

D C

E
E

D
Υ2

Figure 7.19: Representative flags of a 5-orbit map M as assembled flags from the truncation
map Tr(M), where Υ2 ∈ V (M) is the corresponding face in Tr(M) in a base flag
Υ ∈ F(Tr(M)).

Proposition 7.7. If the truncation Tr(M) of a 5-orbit map is a 5-orbit map, then M is

of type 5Bp and Tr(M) is of type 5Bd
.

With regards to the truncated symmetry type graphs with 15 vertices that correspond

to the all thirteen symmetry type graphs with five vertices we can apply the algorithm in

Figure 7.3 to the symmetry type graphs shown in Figure 3.7.
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Truncation of 6-orbit maps.

Given a 6-orbit mapM, we know that its truncation map Tr(M) has either 6, 9 or 18

orbits on its flags. In this part of the section we go through the remaining nine possible

symmetry type of 6-orbit maps: 6Hp , 6Jd , 6Bp , 6Fd
, 6Gp , 6Mdp

, 6Ndp
, 6Odp

and 6Pdp
. As

it was mentioned while we studied the truncation of 4-orbit maps, these later symmetry

type of 6-orbit maps might correspond to the truncation map Tr(M) of some map M.

Further on, we find the possible symmetry type graphs with 9 vertices that correspond

to the truncation Tr(M) of a map M and determine which of them are related to the

truncation of a 6-orbit or 9-orbit map.

Observe that a map Tr(M) with symmetry type graph 6Bp , 6Gp , 6Ndp
, or 6Odp

is

transitive on its sets of faces and vertices, under the action of its automorphism group,

see Figure 7.15. Consider, the partition (A0,A1,A2) on the flags of a map Tr(M), such

that the flags Υ ∈ A0, Υ2 ∈ A2 and Υ2,1 ∈ A1 induce a flag ΦΥ ∈ F(M). Then, every face

in Tr(M) contains flags of the six flag-orbits of F(Tr(M)). Hence, for any flag Υ ∈ A0 we

can define a face Υ2 in Tr(M) as an element in V (M). Moreover, as we saw previously in

similar cases, the choice of orbit of F(Tr(M)) is independent for the flag Υ ∈ A0 because

the face Υ2 ∈ V (M) contains flags in all six orbits, and the connectivity of the graph

T (Tr(M)) infers the same graph (up to isomorphisms) T (M), defined by the same type

of flags for F(M) after we apply the “untruncation” method. Therefore, we proceed with

our construction as follows. If there is a flag Υ ∈ A0 that belongs to the flag-orbit A of

F(Tr(M)), say, it follows that the flags Υ2 ∈ A2 and Υ2,1 ∈ A1 are in the flag-orbits B

and C of F(Tr(M)), respectively. Hence, the induced flag ΦΥ ∈ F(M) is described as

the very left flag in Figure 7.20. Consequently, the flag (ΦΥ)2 =: ΦΥ1 is induced by the
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D

C
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F

E

D

Υ2

Υ2

Υ2

Υ2

Υ2

Υ2

Figure 7.20: Representative flags of a 6-orbit map M, as assembled flags of a vertex- and face-
transitive 6-orbit map Tr(M), where Υ2 ∈ V (M) is the corresponding face in
Tr(M) in a base flag Υ ∈ F(Tr(M)).

flags Υ1 ∈ A0, Υ1,2 ∈ A2 and Υ1,2,1 ∈ A1 in the orbits F , E and D, respectively. This

later is shown in the very right side in Figure 7.20. Following with this procedure, we can

find that there are exactly six types of flags for the map M, all in the same vertex orbit

that Υ2 ∈ V (M). Therefore, M is a 6-orbit vertex-transitive map with symmetry type

either 6Bp , 6Gp , 6Mopp , or 6Popp whose truncation 6-orbit map has symmetry type graph
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either 6Bp , 6Gp , 6Ndp
or 6Odp

, respectively.

Concerning the possible symmetry type graphs of maps, depicted in Figure 7.16, that

the 6-orbit map Tr(M) might have, we recall the following observations.

iv) A map with symmetry type 6Hp has two face-orbits, both with 3 flag-orbits.

v) A map with symmetry type 6Jd has two face-orbits, one with 5 flag-orbits and the

other with one flag-orbit.

vi) A map with symmetry type 6Fd
, 6Mdp

or 6Pdp
is face-transitive.

This latter observations infer that unlike to the previous analysis, the construction of the

map M from a 6-orbit map Tr(M) is not that straight-forward. Nevertheless, it can be

seen that for each map Tr(M) with symmetry type graph as those in Figure 7.16, the

resulting symmetry type of the corresponding mapM after we apply the “untruncation”

method has the same type of vertex-orbits in M than face-orbits in Tr(M). Hence, the

construction of the map M is independent of the choice of flag and of orbit that we

consider in F(Tr(M)). Therefore, we can always choose a flag Υ ∈ F(Tr(M)) in any

flag-orbit of Tr(M) and define its face Υ2 in Tr(M) as an element in V (M). That is,

any choice of flag and of orbit in F(Tr(M)) will yield the same result on the symmetry

type of M.

Given the partition (A0,A1,A2) of the flags of Tr(M). Suppose that the flag Υ ∈ A0

is a flag in the flag-orbit F in Tr(M). Then, the flags Υ2 ∈ A2 and Υ2,1 ∈ A1 are in

the flag-orbits E and D of F(Tr(M)), respectively. Inducing a flag ΦΥ ∈ F(M) (as the

very right one of the Figure 7.21 (a) and (b)), that represents one type of flags of F(M).

Suppose that the face Υ2 is an element in V (M) and Tr(M) has symmetry type graph

either

(a) 6Fd
. Then, it follows that the flags ΦΥ0 := (ΦΥ)1, ΦΥ0,1 := (ΦΥ)1,2, ΦΥ0,1,0 :=

(ΦΥ)1,2,1, ΦΥ0,1,0,1 := (ΦΥ)1,2,1,2, and ΦΥ0,1,0,1,0 := (ΦΥ)1,2,1,2,1 in F(M) describe other

five types of flags inM, distinct than ΦΥ, with Υ,Υ0,Υ0,1,Υ0,1,0,Υ0,1,0,1,Υ0,1,0,1,0 ∈
A0,; or

(b) 6Hp , 6Jd , 6Mdp
or 6Pdp

. Following the adjacency on the flags in Tr(M) and arranging

the flag (ΦΥ)2 ∈ F(M), we obtain that this is of the same type as ΦΥ, in all four

cases. However, the corresponding flags to (ΦΥ)0 and (ΦΥ)1 in F(M), determine

other three types of flags in F(M). These latter are described by flags of A0 in

the orbits A, B or E, inducing that their corresponding 2-adjacent flags in A2 and

(2,1)-adjacent flags in A1 belong to the flag-orbits B, A, or F and C, A and F ,

respectively. These three types of flags, in F(M), are the first, second and fifth

flags depicted in Figure 7.21, from left to right, respectively. By the connectivity of
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Figure 7.21: Reresentative flags of a 6-orbit maps, as assembled flags of the no vertex-transitive
6-orbit map Tr(M) with (a) symmetry type 6Fd

, and (b) symmetry type 6Hp , 6Jd ,
6Mdp

or 6Pdp
, where Υ2 ∈ V (M) is the corresponding face in Tr(M) in a base flag

Υ ∈ F(Tr(M)).

GTr(M) we can proceed in a similar fashion and find the remaining two other types

of flags in F(M) and determine the cubic 3-edge-coloured connected graph T (M).

We conclude with the following proposition.

Proposition 7.8. If the truncation Tr(M) of a 6-orbit map is a 6-orbit map, then one

of the following holds.

(i) M and Tr(M) are of type 6Bp,

(ii) M and Tr(M) are of type 6Gp,

(iii) M and Tr(M) are of type 6Hp,

(iv) M is of type 6Jp and Tr(M) is of type 6Jd,

(v) M is of type 6Mopp and Tr(M) is of type 6Ndp
,

(vi) M is of type 6Nopp and Tr(M) is of type 6Fd
or of type 6Mdp

,

(vii) M is of type 6Oopp and Tr(M) is of type 6Pdp
, or

(viii) M is of type 6Popp and Tr(M) is of type 6Odp
.

The truncation of a 6-orbit map M can be a 9-orbit or a 18-orbit map. We shall

say that there are seventy possible symmetry type graphs with 18 vertices, obtained by
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applying once more the so called algorithm in Figure 7.3 to each symmetry type graph

T (M) with 6 vertices. (Forty-two of the symmetry type of maps with 6 vertices are

mentioned together in this chapter and in Chapter 4, the other twenty-two can easily be

founded by applying the dual and Petrie operators.)

Finally, to determine which of the many symmetry types of 9-orbit maps correspond

to be the symmetry type of the truncation Tr(M) of a 6-orbit map M, we recall the

necessary (0,2) and (1,2) 2-factors in Figures 3.1 and 7.7, respectively, that the symmetry

type graph of the truncation of a map must contain. There are exactly ten possible

symmetry type graphs with 9 vertices that satisfy the conditions to correspond to the

symmetry type of a 9-orbit map Tr(M), as the truncation on either a 3-orbit, a 6-orbit

or a 9-orbit map M, see Figure 7.22.

In fact, applying the algorithm in Figure 7.3 to the three symmetry type graphs of

3-orbit maps, it can be seen that the three graphs labelled by 9A, 9B and 9Cd
in Figure

7.22 are isomorphic to the truncated symmetry type graphs of the symmetry type graphs

30, 32 and 302, respectively. Moreover, applying the “untruncation” method to a 9-orbit

map Tr(M) with symmetry type either 9A, 9B or 9Cd
in such way that if we suppose that

each flag Υ ∈ A0 belongs either to the flag-orbit C, D or I (Figure 7.22), then the flags

Υ2 ∈ A2 and Υ2,1 are in the flag orbits B, E or H and A, F or G, respectively. Where

(A0,A1,A2) is the proper partition of the set F(Tr(M)), induced by Proposition 7.1.

Furthermore, suppose that a map Tr(M) of type 9A, 9B or 9Cd
with the corresponding

partition (A0,A1,A2) of the set F(Tr(M)) such that a flag Υ ∈ A0, does not belong to the

flag-orbits C, D nor I, unlike in the above paragraph. Then, applying the “untruncation”

method, it can be seen the we can obtain six the different flags that represent the flag-

orbits of M, as those shown in Figure 7.23 (a) or (b), respectively. Inducing the results

in Proposition 7.9.

Proposition 7.9. If the truncation Tr(M) of a 6-orbit map is a 9-orbit map, then one

of the following holds.

(i) M is of type 6D and Tr(M) is of type 9A,

(ii) M is of type 6F and Tr(M) is of type 9B, or

(iii) M is of type 6Mopp and Tr(M) is of type 9Cd
.

The remaining symmetry type graphs in Figure 7.22 of 9-orbit maps, different from

9A, 9B and 9Cd
will be study next, on the analysis of the truncation of 9-orbit maps.
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Figure 7.22: Symmetry type graphs with 9 vertices of truncated 3-orbit, 6-orbit or 9-orbit maps.
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Figure 7.23: Representative flags of 6-orbit maps, as assembled flags of the 9-orbit map Tr(M),
where in (a) Tr(M) has symmetry type graph 9A or 9Cd

, and in (b) Tr(M) has
symmetry type graph 9B. The element Υ2 ∈ V (M) correspond to a face in Tr(M)
in a base flag Υ ∈ F(Tr(M)).

Truncation of 7-orbit and 9-orbit maps.

In this part we complete the study on truncation of k-orbit maps with k ≤ 7 and

k = 9. Once again, one can find all truncated symmetry type graphs with 21 and with 27

vertices, associated to each symmetry type graphs with 7 and 9 vertices, respectively, by

applying the algorithm in Figure 7.3, once that is known the symmetry type graph T (M)

with 7 or with 9 vertices.

By a proper combination of the (1,2) 2-factors in Figure 7.7, it can be seen that

there are exactly two different symmetry type graphs with 7 vertices: 7J and 7Jp , that

correspond to the symmetry type of the truncation of a 7-orbit map, depicted in the

Figure 7.24. Let Tr(M) be a map with symmetry type either 7J or 7Jp , and (A0,A1,A2)

7J

ABC

G D

7Jp

EF

ABC

DEG F

Figure 7.24: Symmetry type graphs with 7 vertices of truncated 7-orbit maps.

the partition on the flags of Tr(M). The analysis of these 7-orbit maps Tr(M) results

similar to that for the 4-orbit truncated map with symmetry type graph 4Dp . Observe

that a map Tr(M) with symmetry type 7J has two face-orbits, one with four flag-orbits
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and the other with three flag-orbits in Tr(M). While, a map Tr(M) with symmetry type

7Jp also has two face-orbits, but one has five flag-orbits and the other has two flag-orbits

in Tr(M). In fact, for both cases when Tr(M) has symmetry type either 7J or 7Jp , the

construction of the map M is independent of the choice of flag Υ ∈ A0 and of flag orbit

in F(Tr(M)) as we find out next.

Supposing that the flag Υ ∈ A0 is a flag in the orbit A, then the flags Υ2 ∈ A2 and

Υ2,1 ∈ A1 are in the orbits A and B, respectively. Thus, the induced flag ΦΥ ∈ F(M)

represents the very left type of flag of the 7 different flags in Figure 7.25, inM. Moreover,

A

A

B

B

C

C

C

B

A

D

E

F

E

D

D

F

F

E

G

G

GΥ2

Υ2

Υ2

Υ2

Υ2

Υ2

Υ2

Figure 7.25: Representative flags of 7-orbit maps, as assembled flags of the corresponding trun-
cated 7-orbit map Tr(M), where Υ2 ∈ V (M) is the corresponding face in Tr(M)
in a base flag Υ ∈ F(Tr(M)).

the flag (ΦΥ)1 =: ΦΥ0 is of the same type as ΦΥ in M. However, the flags (ΦΥ)0 and

(ΦΥ)2 represent two different different types of flags in M, also depicted in Figure 7.25.

Following the adjacencies of the flags in GTr(M) and arranging flags in M, we can easily

find the remaining types of flags in M, as those in Figure 7.25. Consequently, it follows

Proposition 7.10.

Proposition 7.10. If the truncation Tr(M) of a 7-orbit map is again a 7-orbit map,

then one of the following holds.

(i) M is of type 7K and Tr(M) is of type 7J , or

(ii) M is of type 7L and Tr(M) is of type 7Jp.

Regarding to the truncation map Tr(M) of a 9-orbit map M. Recall the symmetry

type graphs of 9-orbit maps, different of 9A, 9B and 9Cd
, in Figure 7.22. Let Tr(M) be

a map with symmetry type 9Ap , 9Bp , 9Dd
, 9E, 9Ep , 9F , or 9Fp , and consider the partition

(A0,A1,A2) of the set F(Tr(M)). Observe that the maps with symmetry type

• 9Ap or 9Ep are face-transitive.

• 9Bp have two face-orbits, one with three flag-orbits and the other with six flags-

orbits.
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• 9Dd
have two face-orbits, one with four flag-orbits and the other with five flags-orbits.

• 9E or 9F have two face-orbits, one with two flag-orbits and the other with seven

flags-orbits.

• 9Fp have three face-orbits, one with all flags in the same flag-orbit, other with three

flag-orbits and the third one with five flags-orbits.

Hence, we follow in a similar fashion and choose any flag in the partition A0 and suppose

this is in a particular flag-orbit, say A, in Tr(M). Then, we apply the “untruncation”

method and construct the mapM and obtain two sets of 9 different flags of the truncation

map Tr(M) as those in Figure 7.26. Where the set (a) correspond to maps Tr(M) with
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H
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Figure 7.26: Representative flags of maps 9-orbit maps, as assembled flags of the truncated 9-
orbit map Tr(M), where in (a) Tr(M) has symmetry type graph 9Ap , 9Dd

, 9E ,
or 9Ep , and in (b) Tr(M) has symmetry type graph 9Bp , 9F , or 9Fp . The element
Υ2 ∈ V (M) corresponds to the face in Tr(M) in a base flag Υ ∈ F(Tr(M)).

symmetry type 9Ap , 9Dd
, 9E, or 9Ep and the set (b) to maps Tr(M) with symmetry type

9Bp , 9F , or 9Fp . Inducing the following Proposition.
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Proposition 7.11. If the truncation Tr(M) of a 9-orbit map is again a 9-orbit map,

then one of the following holds.

(i) M is of type 9C and Tr(M) is of type 9Bp,

(ii) M is of type 9Gp and Tr(M) is of type 9Ep,

(iii) M is of type 9Hp and Tr(M) is of type 9Ap.

(iv) M is of type 9I and Tr(M) is of type 9Dd
,

(v) M is of type 9J and Tr(M) is of type 9E,

(vi) M is of type 9K and Tr(M) is of type 9F , or

(vii) M is of type 9L and Tr(M) is of type 9Fp.

In this way, we conclude with the results obtained so far on truncation of k-orbit maps,

with k = 1, . . . , 6, 7, 9. Such results are listed in the Tables 7.1 and 7.2.

Sym type Sym type of Tr(M) with
of M k orbits 3k

2
orbits 3k-orbits

1 1 — 30

2 2 — 6Nd

20 — — 6G
22 212 — 6Md

21 — — 6Od

201 20 30 6B
212 — — 6Pd

202 — — 6H
30 — — 9A
32 — — 9B
302 302 — 9Cd

4B — 6Pd
12B

4C — 6Od
12C

4Dp 4Dp — 12D
4E 4D — 12E
4G — 6Nd

, 6Md
12G

4Gd
4G — 12H

4H — 6G, 6H 12C
5Bp 5Bd

— 15A

Table 7.1: Truncation symmetry types of k-orbit maps, with 1 ≤ k ≤ 5.
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Sym type Sym type of Le(M) with
of M k orbits 3k

2
orbits 3k-orbits

6Bp 6Bp — 18B
6D — 9A 18D
6F — 9B 18F
6Gp 6Gp — 18G
6Hp 6Hp — 18H
6Jp 6Jd — 18J

6Mopp 6Ndp
9Cd

18M
6Nopp 6Fd

, 6Mdp
— 18N

6Oopp 6Pdp
— 18O

6Popp 6Odp
— 18P

7K 7J — 21K
7L 7Jp — 21L
9C 9Bp — 27C
9Gp 9Ep — 27G
9Hp 9Ap — 27H
9I 9Dd

— 27I
9J 9E — 27J
9K 9F — 27K
9L 9Fp — 27L

Table 7.2: Truncation symmetry types of k-orbit maps, with k = 6, 7, 9.

7.2 Composition of dual and truncation

For a given map M, the vertices of its truncation map Tr(M) have valency 3. Then,

the dual map of Tr(M) is a map with triangular faces. Hence, there is a correspondence

between the sets of vertices and faces ofM with the vertex set of the dual map (Tr(M))∗,

also known as the two-dimensional subdivision of M, [49]. In Figure 7.27 is depicted the

two-dimensional subdivision of the icosahedron or dual map of the truncated icosahedron.

Its flag graph can easily be founded by exchanging the colours i and 2−i, with i ∈ {0, 1, 2},
on the edges of the graphs GTr(M) and G(Tr(M))∗ as it was mentioned in section 4.1. Thus,

the following proposition is a consequence from Proposition 7.1.

Proposition 7.12. The flag graph G(Tr(M))∗, of the two-dimensional subdivision map

(Tr(M))∗ of any map M, can be quotient into a graph as the symmetry type graph 32.
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Figure 7.27: Trunated icosahedron (left) and the two-dimensional subdivision of the icosahedron
(right).

However, if we consider the truncation of the dual of a map M∗, then we produce a

map isomorphic to the map known as the leapfrog map Le(M) of a mapM, [49, 24, 18].

In other words, Le(M) ∼= Tr(M∗). And this gives a completely different result than the

map (Tr(M))∗ as one can see below.

7.2.1 Leapfrog: trucation of dual map.

As we said before, the leapfrog map Le(M) of M is isomorphic to the truncation of

the dual map M∗ of M. One way to construct the leapfrog map Le(M) of the map M
is by drawing, on the surface, a perpendicular edge to each edge of M and joining by an

edge the two end points of two edges if the corresponding edges inM share a vertex and

belong to the same face. In this way, we obtain a one-to-one correspondence between the

faces of Le(M) and the set of faces and vertices ofM. In Figure 7.28 is shown the image

of the icosahedron after apply the leapfrog operation.

Figure 7.28: Icosahedron (left) and its leapfrog image (right), isomorphic to the truncated do-
decahedron.
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Notice that all the vertices of the map Le(M) have valence three. The faces of Le(M)

that are in correspondence with the faces ofM remain of the same length, while the faces

of Le(M) that correspond to the vertices of M are of length two times the valence of its

corresponding vertex. It is not hard to see that if M contains |E| edges, then the map

Le(M) contains 3|E| edges.

As is depicted in the Figure 7.29, every flag in F(M) is divided into three differ-

ent flags of the leapfrog map Le(M). Let Φ = (Φ0,Φ1,Φ2) ∈ F(M) be a flag in

Φ2

Φ1
Φ0

Figure 7.29: The three respective flags of F(Le(M)) to the flag Φ = (Φ0,Φ1,Φ2) ∈ F(M).

F(M), then (Φ, 0) := ({Φ1,Φ2},Φ1,Φ0}), (Φ, 1) := ({Φ1,Φ2}, {Φ0,Φ2},Φ0) and (Φ, 2) :=

({Φ1,Φ2}, {Φ0,Φ2},Φ2), denote the three corresponding flags of Φ in F(Le(M)). The

adjacency between these is given as follows.

(Φ, 0)0 = (Φs2 , 0), (Φ, 0)1 = (Φ, 1), (Φ, 0)2 = (Φs0 , 0);

(Φ, 1)0 = (Φs1 , 1), (Φ, 1)1 = (Φ, 0), (Φ, 1)2 = (Φ, 2);

(Φ, 2)0 = (Φs1 , 2), (Φ, 2)1 = (Φs0 , 2), (Φ, 2)2 = (Φ, 1).

Let l0, l1 and l2 be the distinguished generators of the monodromy group Mon(Le(M)),

with (l1l2)3 = id. Thus, we also present the algorithm shown in Figure 7.30 to construct,

from GM, the flag graph of Le(M).

Recall that a k-orbit map M which truncation map Tr(M) is a k-orbit or a 3k
2

-orbit

map, can be quotient into a graph isomorphic to the symmetry type graph 201, [45].

Meaning that there exist a bipartition (A,B) on the vertices of GM such that each vertex

in the partition A is adjacent to a vertex in the partition B by and edge of colour 2. In

addition, recall that there is a bijection δ : F(M)→ F(M∗) such that for each Φ ∈ F(M)

and each i ∈ {0, 1, 2}, Φiδ = (Φδ)2−i. Since Le(M) ∼= Tr(M∗), we shall say that a k-orbit

map M such that its leapfrog map is a k-orbit or a 3k
2

-orbit map, can be quotient into a

graph as the symmetry type graph 212.

However, based on the algorithm in Figure 7.30, observe that we can give the partition

(A0,A1,A2) of the vertices of the flag graph GLe(M) of the leapfrog map Le(M) in such

way that for each vertex Υ ∈ F(Le(M)) in the partition A2, the vertices Υ2 and Υ2,1
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0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Figure 7.30: Any local representation of a flag, in the left. The result under the medial operation,
locally obtained, in the right.

correspond to the partitions A1 and A2, respectively. Thus, the assembling these flags we

obtain a new flag ΦΥ := {Υ,Υ2,Υ2,1} ∈ F(M), where the face Υ2 will be considered as

an element of F (M). Hence, we obtain the following proposition.

Proposition 7.13. The flag graph GLe(M), of the leapfrog map Le(M) of any map M,

can be quotient into a graph as the symmetry type graph 30.

Therefore, by the results on truncation, shown in the Tables 7.1 and 7.2, we can obtain

the classification given in the Table 7.3 where are listed the symmetry types that the map

Le(M) can have.
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Sym type Sym type of Le(M) with
of M k orbits 3k

2
orbits 3k-orbits

1 1 — 30

2 2 — 6Nd

20 212 — 6Md

22 — — 6G
21 — — 6Od

201 — — 6Pd

212 20 30 6B
202 — — 6H
30 — — 9B
32 — — 9A
302 302 — 9Cd

4Bd
— 6Pd

12B
4Cd

— 6Od
12C

4Dp 4Dp — 12D
4Ed

4D — 12E
4G 4G — 12H
4Gd

— 6Nd
, 6Md

12G
4Hd

— 6G, 6H 12C
5Bp 5Bd

— 15A
6Bp 6Bp — 18B
6Dd

— 9A 18D
6Fd

— 9B 18F
6Gp 6Gp — 18G
6Hp 6Hp — 18H
6Jp 6Jd — 18J

6Mdp
6Ndp

9Cd
18M

6Ndp
6Fd

, 6Mdp
— 18N

6Odp
6Pdp

— 18O
6Pdp

6Odp
— 18P

7Kd
7J — 21K

7Ld
7Jp — 21L

9Cd
9Bp — 27C

9Gpd
9Ep — 27G

9Hpd
9Ap — 27H

9Id 9Dd
— 27I

9Jd 9E — 27J
9Kd

9F — 27K
9Ld

9Fp — 27L

Table 7.3: Leapfrog symmetry types k-orbit maps, with 1 ≤ k ≤ 7 and k = 9.





Conclusions

Symmetry type graphs have numerous applications and admit powerful generaliza-

tions. For instance, in [44] Orbanić, Pellicer, Pisanski and Tucker (2011), show the edge-

transitive maps fall into 14 types, obtained in [26, 53], each of them described by its

symmetry type graph. In this thesis, with the symmetry type graph, we have presented

a method that helps in enumerate the possible symmetry types of maniplexes, from the

action of the automorphism group of the maniplex on its set of flags.

The main results of the first part of the thesis were presented in Chapter 3, where we

also present all possible symmetry type graphs of 2-maniplexes of up to 5 vertices, classify

3-orbit maniplexes and give generators of their automorphism groups. In particular, we

show that 3-orbit maniplexes are never fully-transitive, but they are i-face-transitive for

all but one or two values of i, depending on the symmetry type. We extend further the

study of symmetry type graphs to show that if a 4-orbit maniplex is not fully-transitive,

then it is i-face-transitive for all i but at most three ranks. Moreover, we show that a

fully-transitive 3-maniplex that is not regular cannot have an odd number of orbits of

flags, under the action of the automorphism group. Also, given the symmetry type graph

of a maniplex we give generators for the automorphism group of a k-orbit maniplex with

respect to some base flag, Theorem 3.5.

In the second part of the thesis, we saw how symmetry type graphs can also be applied

to operations on maps, such as medial, chamfering and truncation. Medial operation

helped us to find the possible symmetry types of the medial k-orbit map, with k ≤ 5.

With truncation operation we completed a classification of possible symmetry types for

the truncation and leapfrog of k-orbit maps for k ≤ 7 and k = 9.

Furthermore, joining the results obtained for the medial and truncation operations on

k-orbit maps, together with the results obtained for the chamfering operation on k-orbit

maps, we obtain the following table, where are listed all possible number of flag-orbits of a

mapM′ with regards to k = |Orb(M)|, whereM′ is the medial, truncation or chamfering

map of M.

123
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M′ Me(M) Tr(M) Cham(M)

|Orb(M′)| 2k or k 3k, 3k
2

or k 4k, 2k or k
k|3 k = 1, 2, 3, 6

Table 7.4: Possible number of flag-orbits of a mapM′ with regard to k = |Orb(M)|, whereM′
is the medial, truncation or chamfering map of M.

Regarding the symmetry types of maniplexes, in order to characterize the symmetry

types of k-orbit maniplexes, as well it was done in this thesis for 2-maniplexes, we lead to

the open problems of study different operations on maniplexes and the symmetry types

of maniplexes that are obtained from applying such operations on a maniplex.
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[11] M. del Ŕıo Francos, Truncated symmetry type graphs. Ars Combinatoria, in press.
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[42] A. Orbanić, Database of small non-degenerate edge-transitive maps.

http://www.ijp.si/RegularMaps
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Razširjeni povzetek

Uvod

Matematiki že od nekdaj z zanimanjem preučujejo simetrične objekte; tako se je npr.

raziskovanje “najpravilneǰsih”, t.i. platonskih in arhimedskih teles, začelo že v antiki.

Ideja “najbolj simetričnega”, t.j. regularnega ali platonskega poliedra, je kasneje navdi-

hnila več pomembnih posplošitev: od regularnih zemljevidov do regularnih abstraktnih

politopov.

Predmet naše raziskave so t.i. zemljevidi in manipleksi ranga n, katerih kombina-

torična struktura je popolnoma določena z n-valentnim grafom s pobarvanimi (oz. z

0, 1, ..., n−1 oštevilčenimi) povezavami, ki mu pogosto pravijo tudi praporni graf (ali graf

praporov). Tak graf lahko razumemo tudi kot Schreierjev odsekovni graf ([9, 51]). Tako

je npr. praporni graf zemljevida kubičen (trivalenten) graf. Abstraktni politopi so kombi-

natorične posplošitve klasičnih poliedrov in politopov ([40]), manipleksi pa so posplošitve

zemljevidov na ploskvah in (prapornih grafov) abstraktnih politopov; tako lahko zeml-

jevide obravnavamo kot maniplekse ranga 2 (ali 2-maniplekse). Nekaj drugih zanimivih

lastnosti prapornih grafov je opisanih v [1].

Cilj disertacije je klasificirati simetrijske tipe manipleksov. V ta namen vpeljemo t.i.

simetrijski graf manipleksa. Iz njega lahko razberemo različne lastnosti in informacije

o simetrijah manipleksa ranga n − 1, npr. njegovo morebitno regularnost, tranzitivnost

po vozlǐsčih, povezavah, licih ali katerihkoli drugih licih ranga ≤ n − 1. S pomočjo

simetrijskih grafov lahko definiramo tudi simetrijske razrede manipleksov, in sicer tako,

da vse maniplekse, katerih simetrijski grafi so izomorfni, uvrstimo v isti simetrijski razred,

ki mu priredimo ustrezni simetrijski graf. Strategija za njihovo generiranje je razložena v

[4]. Dress in Huson (1987) obravnavata takšne grafe kot Delaney-Dressove simbole, [21].

Dress in Brinkmann (1996) ter Balaban in Pisanski (2012) so jih uporabili v matematični

kemiji, [22] in [2]. Simetrijski grafi platonskih in arhimedskih teles so določeni v [36].

Orbanić, Pellicer in Weiss so klasificirali k-orbitne zemljevide za k ≤ 4 s pomočjo

operacij na zemljevidih, npr. z operacijama sredinjenja (angl. medial) in prisekanja

(angl. truncation) [45]. V tej disertaciji, ki jo je motiviralo njihovo delo, nadgradimo

129
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njihove rezultate in podamo (z uporabo istih operacij na zemljevidih) klasifikacijo vseh

k-orbitnih zemljevidov s k ≤ 6 orbitami. Vse simetrijske tipe zemljevidov za k ≤ 10 tudi

oštevilčimo v strnjeni obliki (tabela 3.5). Poleg tega smo raziskali tudi nekatere druge

operacije na zemljevidih, npr. operaciji brušenja (angl. chamfering) in preskoka (angl.

leapfrog), kar je odprlo naslednje vprašanje: Koliko prapornih orbit ima zemljevid, ki

ga dobimo iz k-orbitnega zemljevida, če na njem uporabimo katerokoli od (omenjenih)

operacij na zemljevidih?

Vsebina disertacije je razdeljena na tri dele. V prvem delu predstavimo osnovne po-

jme teorije permutacijskih grup in teorije grafov ([5, 19], [3, 16]). Podobno, v poglavjih

2 in 3 najprej definiramo osnovne pojme in pregledno predstavimo osnovno teorijo zeml-

jevidov, manipleksov in simetrijskih grafov, nato pa poǐsčemo vse možne simetrijske tipe

k-orbitnih zemljevidov za vrednosti k ≤ 5. Na koncu tega dela predstavimo tri dobro

znane operatorje na zemljevidih in manipleksih: dual, petrial in nasprotni operator, ter

analiziramo, kako morebitna dualnost zemljevida vpliva na njegov simetrijski graf oz. kako

lahko definiramo razširjeni simetrijski graf sebi-dualnega (ali samodualnega) zemljevida.

V drugem delu predstavimo razširitev rezultatov iz [45] za operaciji sredinjenja in

prisekanja k-orbitnih zemljevidov in razǐsčemo operaciji brušenja in preskoka. Vse štiri

operacije lahko opǐsemo kot razdelitev trikotnikov, ki ustrezajo praporom prvotnega zeml-

jevida, na manǰse (glej npr. [32, 50]). Te operacije lahko opǐsemo tudi kot pravila za trans-

formacijo prapornega grafa prvotnega zemljevida v praporni graf njegovega sredinjenega,

brušenega, prisekanega ali preskočenega zemljevida, in raziskujemo ustrezne simetrijske

grafe. Odgovorimo tudi na vprašanje, kako operaciji prisekanja in preskoka vplivata na

število prapornih orbit zemljevida.

Nazadnje, v tretjem delu disertacije, predstavimo povzetek naših rezultatov in nakažemo

možne nadaljnje smeri raziskovanja.

I. del

Zemljevidi in manipleksi

Topološko gledano lahko zemljevidM definiramo kot celično vložitev povezanega grafa

v sklenjeno kompaktno ploskev. Vozlǐsča, povezave in lica v M imenujemo tudi 0-, 1- in

2-lica vM. V letih 1982-83 sta Lins in Vince razvila koncept kombinatoričnih zemljevidov

v [37] in [54]. V tej disertaciji uporabljamo prav takšno kombinatorično definicijo zemlje-

vida. Torej, zemljevid M razumemo kot kubični graf GM z oštevilčenimi (pobarvanimi)

povezavami, ki ga pogosto imenujejo praporni graf zemljevida.

Leta 2012 je Wilson, v želji da poenoti pojma zemljevidov in abstraktnih politopov,

vpeljal koncept manipleksov [56]; bralcu priporočamo [40] za spoznavanje z osnovno teorijo
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abstraktnih politopov. Čeprav abstraktnih politopov v tej disertaciji ne definiramo, ni

težko preveriti, da lahko vse, kar pokažemo za maniplekse, prevedemo v ustrezne trditve

o abstraktnih politopih (oz. o njihovih prapornih grafih), kakor je prikazano v [10]. Kom-

binatorična struktura manipleksa M ranga n − 1 (ali (n − 1)-manipleksa) je popolnoma

določena s po povezavah pobarvanim n-valentnim grafom GM s kromatičnim številom n,

ki ga pogosto imenujejo praporni graf. Tako npr. nedegenerirani zemljevidi ustrezajo

2-manipleksom.

Vsakemu manipleksu M ranga n− 1 lahko priredimo podgrupo Mon(M) permutaci-

jske grupe Sym(F(M)) njegove množice praporov F(M), t.i. monodromijsko grupo

manipleksa M. Monodromijska grupa Mon(M) (n − 1)-manipleksa M je generirana

z zaporedjem n involucij (s0, s1, . . . , sn−1); vsaka od involucij si ∈ Mon(M) preslika vsak

prapor Φ ∈ F(M) v njegov i-sosedni prapor. Poleg tega so vsi generatorji si in per-

mutacije sisj za |i − j| ≥ 2 brez fiksnih točk, grupa Mon(M) pa deluje tranzitivno na

F(M).

Množica i-lic (n − 1)-manipleksa ustreza prapornim orbitam v F(M), doloèenim z

delovanjem grupe, generirane z množico Si := {sj|i 6= j} za i ∈ {0, 1, . . . , n}. Grupa

Mon(M) na vsaki od množic i-lic deluje tranzitivno.

Avtomorfizem α n-manipleksa M je tak avtomorfizem grafa GM, ki ohranja barve

njegovih povezav. Torej lahko na α gledamo kot na permutacijo praporov v F , ki komutira

z vsako permutacijo iz monodromijske grupe. Ker je graf GM povezan, je delovanje grupe

avtomorfizmov Aut(M) manipleksaM semiregularno na vozlǐsčih grafa GM. Pravimo, da

je manipleksM i-lično (ali po licih) tranzitiven, če je grupa Aut(M) tranzitivna na licih

ranga i. ManipleksM je polno tranzitiven, če je i-lično tranzitiven za vsak i = 0, . . . , n−1.

Če ima Aut(M) k prapornih orbit v M, pravimo, da je M k-orbitni manipleks.

1-orbitni manipleks imenujemo tudi regularen ali refleksibilen manipleks. 2-orbitni ma-

nipleks, v katerem sosedni prapori pripadajo različnim orbitam, je kiralen manipleks.

Ta dva tipa zemljevidov in politopov sta bila po dolgem in počez raziskana ([40, 57] in

[28, 33, 46]), zelo malo pa je znanega o takšnih, ki niso ne regularni ne kiralni.

Hubard v [30] karakterizira grupe avtomorfizmov 2-orbitnih in polno tranzitivnih

poliedrov (t.j. vozlǐsčno, povezavno in lično tranzitivnih poliedrov) s pomočjo različnih

generatorjev (in relacij med njimi). Našla je tudi generatorje grupe avtomorfizmov 2-

orbitnega politopa kateregakoli ranga. Duarte in Hubard sta v [23] in [29] raziskala vseh

sedem tipov 2-orbitnih zemljevidov v različnih kontekstih.

Simetrijski grafi

V tem razdelku definiramo in podamo lastnosti n-valentnega grafa s pobarvanimi

povezavami, ki ga imenujemo simetrijski graf (n − 1)-manipleksa, n ≤ 3. Simetrijski



132

graf T (M) danega manipleksa M uporabimo kot orodje za določanje lastnosti M in

za pridobitev informacij o njegovih simetrijah. Graf T (M) je pravzaprav kvocientni

graf prapornega grafa manipleksa M, določen z delovanjem grupe avtomorfizmov M
na praporih. Zato za opis strukture T (M) v splošnem potrebujemo t.i. predgrafe, t.j.

grafe, v katerih so dovoljene večkratne povezave in polpovezave (povezave z enim samim

krajǐsčem). Notacija simetrijskega grafa je ekvivalentna Delaney-Dressovemu simbolu,

opisanem v [21].

Očitno velja: če jeM k-orbitni (n−1)-manipleks, potem ima T (M) natanko k vozlǐsč.

Torej je število tipov (oz. ekvivalenčnih razredov) k-orbitnih manipleksov odvisno od

števila n-valentnih predgrafov na k točkah, ki so lahko pravilno pobarvani po povezavah s

tremi barvami in katerih povezane komponente 2-faktorja z barvama i in j so vedno takšne

kot na sliki 3.1 za |i − j| ≥ 2. Obstaja natanko sedem tipov 2-orbitnih 2-manipleksov

(slika 3.2) in le trije tipi 3-orbitnih 2-manipleksov (slika 3.3). Orbanić, Pellicer in Weiss

v [45] študirajo vse tipe k-orbitnih 2-manipleksov v kontekstu zemljevidov za k ≤ 4. Za

simetrijske grafe 2-manipleksov s tremi ali štirimi orbitami v tej disertaciji uporabljamo

notacijo iz [45].

Kot smo že poudarili, so simetrijski grafi refleksibilnega (n−1)-manipleksa sestavljeni

iz enega vozlǐsča in n polpovezav. Klasifikacija dvo-orbitnih manipleksov v kontekstu

lokalne konfiguracije njihovih praporov neposredno sledi iz nabora možnih simetrijskih

grafov. Dejansko za vsak n obstaja 2n− 1 možnih simetrijskih grafov z dvema vozlǐsčema

in n (pol)povezavami, saj za vsako pravo podmnožico I barv {0, 1, . . . , n − 1} obstaja

simetrijski graf z dvema vozlǐsčema in |I| polpovezavami, ki ustrezajo barvam I povezav,

incidentnih vsakemu od obeh vozlǐsč, in ker so vse povezave med dvema vozlǐsčema po-

barvane z barvami, ki niso v I (slika 3.4). Iz [29] in razmǐsljanja o n-politopu kot o

(n − 1)-manipleksu lahko sklepamo, da ta simetrijski graf natanko ustreza manipleksom

razreda 2I .

“Visoko simetrični” manipleksi (t.j. manipleksi z bogato grupo simetrij) so prav-

iloma tisti z manj prapori in tisti z “visoko tranzitivnostjo” lic. Iz simetrijskega grafa

n-manipleksa, oz. iz njegovih primerno pobarvanih podgrafov, lahko razberemo različne

vrste tranzitivnosti lic danega manipleksa.

Izrek 1. Naj bo M (n − 1)-manipleks s simetrijskim grafom T (M). Potem število

povezanih komponent v (n− 1)-faktorju grafa T (M), pobarvanih z barvami {0, 1, . . . , n−
1} \ {i}, določa število orbit i-lic v M za i ∈ {0, 1, . . . , n− 1}.

Tako npr. iz izreka 1 sledi, da ima povezavno-tranzitiven 2-manipleks M simetrijski

graf T (M) z eno samo povezano komponento 2-faktorja barv 0 in 2, kot grafi na sliki 3.1 za

i, j ∈ {0, 2}. Torej ima T (M) 1, 2 ali 4 vozlǐsča. Tako vidimo, da je povezavno-tranzitiven

2-manipleks 1-, 2- ali 4-orbitni 2-manipleks ([26]). Povezavno-tranzitivne zemljevide so

študirali Širan, Tucker in Watkins [53]. Kot je poudarjeno v [45], obstaja 22 tipov 4-
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orbitnih 2-manipleksov. Sedem povezavno-tranzitivnih je prikazanih na sliki 3.5, petnajst

povezavno-netranzitivnih pa na sliki 3.6.

Za simetrijske grafe 3-orbitnih manipleksov lahko pokažemo, da obstaja natanko 2n−3

različnih simetrijskih grafov 3-orbitnih manipleksov ranga n − 1. Poleg tega, 3-orbitni

manipleksi nikoli niso polno tranzitivni, so pa po i-lično tranzitivni za vse razen za eno ali

dve vrednosti i, odvisno od simetrijskega tipa. Hitro ugotovimo, da je štetje oz. določanje

vseh možnih simetrijskih grafov s k ≥ 4 vozlǐsči in njihova morebitna klasifikacija po

zgledu tistih za 2 ali 3 vozlǐsča, veliko zahtevneǰsi izziv. Kljub temu v tej disertaciji

razširimo področje raziskovanja simetrijskih grafov in pokažemo, da če 4-orbitni manipleks

ni polno tranzitiven, potem je i-lično tranzitiven za vse i, razen za največ tri range.

Analiza polno tranzitivnih n-manipleksov za n ≥ 3 postane še veliko bolj zapletena.

Hubard v [29] pokaže, da obstaja 2n+1−n−2 razredov polno tranzitivnih dvo-orbitnih n-

manipleksov. Po izreku 3.2 ne obstaja 3-orbitni polno tranzitiven n-manipleks. Razširimo

22 možnih grafov simetrijskih tipov 4-orbitnih 2-manipleksov z dodajanjem (semi)povezav

barve 3 tako, da sta (0, 3) in (1, 3) 2-faktorja kot na sliki 3.1. Izkaže se, da obstaja

20 možnih grafov simetrijskih tipov 4-orbitnih 3-manipleksov, ki so polno tranzitivni

(slika 3.14). Nadalje v tej disertaciji pokažemo, da polno tranzitivni 3-manipleks, če

ni regularen, ne more imeti lihega števila prapornih orbit (glede na delovanje grupe avto-

morfizmov).

Iz danega simetrijskega grafa manipleksa zlahka razberemo generatorje grupe avto-

morfizmov k-orbitnega manipleksa glede na nek bazni prapor(izrek 2).

Izrek 2. Naj bo M k-orbitni n-manipleks in naj bo T (M) njegov simetrijski graf. Pred-

postavimo, da je v1, e1, v2, e2 . . . , eq−1, vq sprehod, ki obǐsče vsako vozlǐsče v T (M), povezava

ei pa ima barvo ai za vsak i = 1, . . . q − 1. Naj bo Si ⊂ {0, . . . , n − 1} takšen, da ima vi
polpovezavo barve s natanko takrat, ko je s ∈ Si. Naj bo Bi,j ⊂ {0, . . . , n−1} množica barv

povezav med vozlǐsčema vi in vj (za i < j), ki nista v sprehodu, in naj bo Φ ∈ F(M) bazni

prapor vM, katerega projekcija v T (M) je v1. Potem je grupa avtomorfizmov manipleksa

M generirana z unijo množic

{αa1,a2,...,ai,s,ai,ai−1,...,a1 | i = 1, . . . , k − 1, s ∈ Si},
in

{αa1,a2,...,ai,b,aj ,aj−1,...,a1 | i, j ∈ {1, . . . , k − 1}, i < j, b ∈ Bi,j}.

Naslednji dve posledici podajata množici generatorjev 2-orbitnih in 3-orbitnih poli-

topov danega razreda. Notacija sledi tisti v izreku 2; če indeksi nekega α ne ustrezajo

parametrom množice, se razume, da je tak avtomorfizem identiteta.

Posledica 1. [30] Naj bo M 2-orbitni (n − 1)-manipleks v razredu 2I za nek I ⊂
{0, . . . , n− 1} in naj bo j0 /∈ I. Potem je{

αi, αj0,i,j0 , αk,j0 | i ∈ I, k /∈ I
}
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množica generatorjev grupe Aut(M).

Posledica 2. Naj bo M 3-orbitni (n− 1)-manipleks.

1. Če je M v razredu 3i za nek i ∈ {1, . . . , n− 2}, potem je{
αj, αi,i−1,i+1,i, αi,i+1,i+2,i+1,i, αi,i+1,i,i+1,i | j ∈ {0, . . . , n− 1} \ {i}

}
množica generatorjev za Aut(M).

2. Če je M v razredu 3i,i+1za nek i ∈ {0, . . . , n− 2}, potem je{
αj, αi,i−1,i, αi,i+1,i+2,i+1,i, αi,i+1,i,i+1,i | j ∈ {0, . . . , n− 1} \ {i}

}
množica generatorjev grupe Aut(M).

Operacije na zemljevidih in manipleksih

Leta 1979 je Wilson “sestavil” (obravnaval hkrati) tri različne operatorje na zemljev-

idih: dual, petrial in nasprotni operator; to je naredil z namenom, da bi regularen zemljevid

transformiral v drug regularen zemljevid [57]. Kasneje, 1982, je Lins prikazal lastnosti

teh operatorjev na prapornih grafih zemljevida; imel jih je za dualnosti zemljevida in jih

imenoval dual, phial in skew, [37]. Tako Wilson kot Lins sta pokazala, da dual in petrial

generirata kopijo grupe S3 z nasprotnim operatorjem kot tretjo involucijo grupe.

Hubard, Orbanić in Weiss so leta 2009 posplošili koncept dualnosti in razširili koncept

petriala na vǐsje range v kontekstu abstraktnih politopov [32]. Kasneje, leta 2012, je

Wilson definiral dual, petrial in nasprotni operator za maniplekse. Ni težko videti, da

za n ≥ 3 dual in petrial na n-manipleksih generirata podgrupo grupe Sym(F(M)),

izomorfno diedrski grupiD4 = 〈δ, π|δ2, π2, (δπ)4〉. V tem poglavju definiramo in prikažemo

nekaj lastnosti teh treh operatorjev na zemljevidih in manipleksih.

Imejmo dan praporni graf GM, prirejen zemljevidu ali manipleksu M. Lastnost teh

operatorjev na M je, da imajo vsi trije grafi GM∗ , GMP in GMopp , ki ustrezajo dualu

M∗, petrialu MP in nasprotnemu zemljevidu ali manipleksu Mopp, isto množico vozlǐsč

F(M) kot GM. Velja tudi, da vsaka bijekcija δ, π in opp med generatorji monodromijske

grupe Mon(M) in generatorji pripadajočih monodromijskih grup Mon(M∗), Mon(MP )

ali Mon(Mopp) inducira permutacijo na povezavah grafa GM, ki opisuje praporne grafe

GM∗ , GMP in GMopp duala, petriala in nasprotnega zemljevida ali manipleksa prvotnega

zemljevida ali manipleksa M. Kasneje lahko z uporabo iste permutacije na povezavah

v GM (zato da dobimo grafe GM∗ , GMP in GMopp iz GM), izpeljemo iz T (M) možne

simetrijske grafe T (M∗), T (MP ) in T (Mopp).

Za dani sebi-dualni (oz. samodualni) manipleks M bijekcija δ inducira permutacijo

d vozlǐsč v T (M) tako, da se barvi povezav i in n − i zamenjata za i = 0, 1, . . . , n.
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Takšno permutacijo d bomo imenovali dualnost sebi-dualnega simetrijskega grafa T (M)

sebi-dualnega manipleksaM. Simetrijski graf pravega sebi-dualnega manipleksa ima du-

alnost, ki fiksira vsa vozlǐsča, simetrijski graf nepravega samodualnega manipleksa pa ima

dualnost, ki prestavi vsaj dve vozlǐsči. Vendar za dani sebi-dualni manipleks M njegov

simetrijski graf T (M) morda ne nudi dovolj informacij o tem, ali je M pravi ali nepravi

samodual. Primer tega je dejstvo, da je kiralni manipleks lahko pravi ali nepravi samodual

([33]), tako da graf simetrijskih tipov kiralnega manipleksa dopušèa dualnosti, ki vozlǐsča

tako fiksirajo kot tudi izmenjajo. To nas spodbudi, da vsakemu vozlǐsču samodualnega

simetrijskega grafa T (M) dodamo še eno povezavo (ali polpovezavo) barve D, ki pred-

stavlja delovanje dualnosti manipleksaM na prapornih orbitah. Nov predgraf imenujemo

razširjeni simetrijski graf sebi-dualnega manipleksa M in ga označimo s T (M).

Gledano do 7 orbit, tipi, ki pravilno določijo samodualnost, so 1, 2, 21, 202, 302, 4Ap,

4Bp , 4Cp , 5Cp , 6Ap , 6Bp , 6Cp in 7Ap (slike 3.2, 3.3, 3.6 in 3.7).

II. del

V drugem delu disertacije geometrijsko in kombinatorično definiramo operacije sred-

injenja (angl. medial), brušenja (angl. chamfering), prisekanja (angl. truncation) in

preskoka (angl. leapfrog). Natančneje, raziskujemo možne simetrijske grafe zemljevidov,

ki jih dobimo s temi operacijami. Za razliko od dualov, petrialov in nasprotnih zemlje-

vidov, pri katerih imajo praporni grafi GM, GM∗ , GMP in GMopp isto število vozlǐsč (kot

prvotni zemljevid), je pri sredinjenju, brušenju, prisekanju ali preskoku zemljevida M
množica praporov novega zemljevida M̃ celoštevilski večkratnik |F(M)|.

Pravzaprav lahko vsako od teh operacij opǐsemo z delitvijo fundamentalnih trikotnikov

(baricentrične subdivizije BS(M)), ki inducira algoritem za izpeljavo GM̃ iz GM. Tak

algoritem nam omogoča najti ustrezne particije (A0, . . . ,Ar) mnočice vozlǐsč prapornega

grafa GM̃ sredinjenega, brušenega, prisekanega ali preskočenega zemljevida M̃, tako da

velja F(M̃) = A0∪· · ·∪Ar za vsakAj blok monodromijske grupe Mon(M̃) za j = 0, . . . , r.

Ni težko opaziti, da grupa avtomorfizmov Aut(M) za M inducira podgrupo H ≤
Aut(M̃) grupe avtomorfizmov zemljevida M̃. Intuitivno pomislimo, da če velja |F(M̃)| =
r|F(M)|, potem je zemljevid M̃ rk-orbitni zemljevid, saj grupa avtomorfizmov zemljev-

ida M razdeli njegovo množico praporjev na k orbit. Vendar se lahko zgodi, da ima M̃
manj kot rk prapornih orbit. V tem delu disertacije se posvetimo tudi temu fenomenu.

Operacija sredinjenja (medial) na zemljevidih

Znano je, da je sredinjenje (medial) tetrahedra oktaeder, njegov medial pa kuboktaeder

(slika 5.1). Medtem ko je prvi polieder regularen, je drugi le 2-orbiten in povezavno-
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tranzitiven kot zemljevid.

Za poljuben zemljevid M definiramo medial za M, Me(M) takole. Množica oglǐsč

mediala Me(M) je množica povezav prvotnega zemljevida M, E(M). Dve oglǐsči v

Me(M) sta povezani, če si ustrezni povezavi vM delita oglǐsče in pripadata istemu licu.

Tako dobimo graf, vložen na isto ploskev kot M. Torej lica Me(M) natanko ustrezajo

povezanim komponentam komplementa grafa (1-skeleta prvotnega zemljevida) na ploskvi.

Zato ni težko videti, da je množica lic mediala Me(M) v bijektivni korespondenci z

množico, ki vsebuje vsa lica in oglǐsča zemljevidaM, t.j. F (Me(M)) := F (M)∪ V (M).

Ni težko videti, da sta medial zemljevida M in medial njegovega duala M∗ izomorfna.

Opazimo, da je vsak prapor prvotnega zemljevidaM razdeljen na dva prapora medi-

alnega zemljevida Me(M) (slika 5.2). Torej je F(Me(M)) = F(M) × {0, 2}. Sosednost

praporjev v Me(M) je v bližnji relaciji s sosednostjo praporjev vM; ta relacija je nasled-

nja:

(Φ, 0)0 = (Φs1 , 0), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φ, 2),

(Φ, 2)0 = (Φs1 , 2), (Φ, 2)1 = (Φs0 , 2), (Φ, 2)2 = (Φ, 0),

kjer so s0, s1 in s2 generatorji Mon(M) in Φ ∈ F(M). Naj bodo m0, m1 in m2 ra-

zlični generatorji Mon(Me(M)). Potem so m0, m1 in m2 involucije brez negibnih točk za

m0m2 = m2m0 in (m1m2)4 = id. Zadnja relacija sledi iz dejstva, da ima vsako oglǐsče

medialnega zemljevida Me(M) valenco 4.

Na sliki 5.3 je prikazan algoritem za konstrukcijo prapornega grafa mediala Me(M)

iz prapornega grafa M. Takšen algoritem inducira dvodelno particijo (A0,A2) množice

oglǐsč v GMe(M), kjer je A0 := {(Φ, 0)|Φ ∈ F(M)} in A2 := {(Φ, 2)|Φ ∈ F(M)}. Od

tod sledi, da praporni graf GMe(M) medialnega zemljevida Me(M) zemljevida M lahko

kvocientno projiciramo v graf, izomorfen simetrijskemu grafu 201.

Hubard, Orbanić in Weiss v [32] pokažejo, da je grupa avtomorfizmov medialnega zeml-

jevida Me(M) izomorfna razširjeni grupi D(M) zemljevida M. Z uporabo pravilnih in

nepravilnih samodualnosti zemljevidov so karakterizirali regularne in 2-orbitne medialne

zemljevide glede na njihove simetrijske tipe. Pokazali so, da je medialni zemljevid Me(M)

regularen natanko takrat, ko jeM regularen in samodualen. V [32, tabela 4] smo nadalje

opazili, da vsak 2-orbiten simetrijski tip nastopa kot medialni zemljevid regularnega ali

2-orbitnega zemljevida. Orbanić, Pellicer in Weiss v [45] razširjajo to v karakterizacijo

simetrijskih tipov vseh medialnih zemljevidov 2-orbitnih zemljevidov. Dokazali so tudi, da

če jeM k-orbitni zemljevid, potem je Me(M) k-orbitni ali 2k-orbitni zemljevid, odvisno

od tega, ali je M samodualni zemljevid ali ne.

Medialni simetrijski graf definiramo kot simetrijski graf medialnega zemljevida in ga

označimo T (Me(M)). V tem poglavju klasificiramo vse možne medialne simetrijske grafe

z največ 7 vozlǐsči. Če zemljevid M ni sebi-dualen, lahko na oglǐsča medialnega simetri-
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jskega grafa T (Me(M)) gledamo kot na pridobljena iz dveh kopij vozlǐsč simetrijskega

grafa T (M), in za določitev sosednosti med vozlǐsči v T (Me(M)) uporabimo algoritem,

prikazan na sliki 5.3. Torej, če k-orbitni zemljevid M ni samodualen, potem ima medi-

alni simetrijski graf T (Me(M)) od Me(M) 2k vozlǐsč. Po drugi strani pa velja, da če

je M samodualen k-orbitni zemljevid, potem lahko njegov medialni simetrijski graf s k

vozlǐsči dobimo iz razširjenega simetrijskega grafa T (M). Barve povezav v T (Me(M)) za

samodualni zemljevid M definiramo z involucijami takole: m0 = s1, m1 = s0 (ali s2) in

m2 = d.

Mnogo avtorjev je že opazilo, da je medial kateregakoli regularnega zemljevida poveza-

vno tranzitiven; pravzaprav Hubard, Orbanić in Weiss v [32] pokažejo, da je medial reg-

ularnega zemljevida bodisi regularen (če je originalni zemljevid samodualen) bodisi tipa

201 (sicer). V tej disertaciji pokažemo, da je vsak simetrijski tip povezavno tranzitivnega

zemljevida medialni simetrijski tip. Orbanić, Pellicer, Pisanski in Tucker (2011) v [44]

pokažejo, da so povezavno tranzitivni zemljevidi 14 različnih tipov, vsak od njih je opisan

s svojim simetrijskim grafom.

To raziskavo medialnih zemljevidov zaključimo z opaženjem, da ima vsak k-orbitni

zemljevid M, za katerega je tudi Me(Me(M)) k-orbitni zemljevid, Schläflijev simbol

{4, 4}. Zemljevidi tipa {4, 4} so zemljevidi na torusu ali na Kleinovi steklenici. Hubard,

Orbanić, Pellicer in Weiss v [31] raziskujejo simetrijske tipe ekvivelarnih zemljevidov na

torusu. Zemljevidi tipa {4, 4} na torusu imajo simetrijski tip 1, 2, 21, 202 ali 4Cp in so

vsi samodualni. Medial zemljevida {4, 4} na torusu tipa 1, 2 ali 4Cp je istega tipa kot

original, medtem ko je za tipa 21 in 202 medial vedno drugega tipa. Zato ima Me(Me(M))

isti simetrijski graf kot M,, kadar je M zemljevid na torusu s Schläflijevim simbolom

{4, 4}. Wilson v [58] pokaže, da obstajata dva tipa zemljevidov tipa {4, 4} na Kleinovi

steklenici, ki ju označuje {4, 4}\m,n\ in {4, 4}|m,n|. Pokazali smo, da je Me(Me(M)) k-

orbitni zemljevid, če jeM k-orbitni zemljevid na torusu tipa {4, 4} ali k-orbitni zemljevid

na Kleinovi steklenici tipa {4, 4}|m,n| za lih n.

V tabeli 5.5 so našteti vsi simetrijski tipi samodualov in medialni tipi k-orbitnih zeml-

jevidov za 1 ≤ k ≤ 10.

Operacija brušenja na zemljevidih

Naslednja operacija na zemljevidih, ki je predstavljena v tej disertaciji, je operacija

brušenja (angl. chamfering), ki se uporablja v kemiji, kot je predstavljeno v [17].

Brušeni zemljevid Cham(M) zemljevidaM dobimo, kot to pove njegovo ime, tako, da

iz povezav v M naredimo t.i. bruse. Natančneje, povezave zemljevida M nadomestimo

s šestkotnǐskimi lici, ki obkrožajo lica zemljevida M v zemljevidu Cham(M). Tako je

množica lic Cham(M) v korespondenci z množico lic F (M) in množico povezav E(M) v
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M, oziroma, za za množico lic v Cham(M) velja F (Cham(M)) = F (M)∪E(M). Zeml-

jevid Cham(M) ima dve vrsti povezav: povezave med šestkotnǐskimi lici in povezave

med licem Φ2 v F (M) in njemu sosednimi šestkotnǐskimi lici (ki ustrezajo incident-

nim povezavam lica Φ2 v M). Dejansko ima Cham(M) natanko 4|E(M)| povezav.

Množica oglǐsč M je prava podmnožica oglǐsč Cham(M), preostalih 2|E(M)| oglǐsč v

V (Cham(M)) \ V (M) (vsako od njih je sosednje natanko enemu oglǐsču v V (M)) ima

stopnjo 3. Za alternativno definicijo operacije brušenja bralcu priporočamo [15].

V tem poglavju definiramo in uporabimo operacijo brušenja na k-orbitnih zemljevidih

in določimo število možnih prapornih orbit brušenja k-orbitnega zemljevida v odvisnoti

od k, kakor je prikazano v [12]. Ta operacija razdeli vsak prapor (trojico) prvotnega

zemljevida na štiri različne prapore v brušenem zemljevidu, torej velja F(Cham(M)) =

F(M)× {0, 1, 2, 3}.
Sosednosti praporov v Cham(M) so tesno povezane s sosednostmi praporjev v M.

Dejansko velja:

(Φ, 0)0 = (Φ, 1), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φs1 , 0),

(Φ, 1)0 = (Φ, 0), (Φ, 1)1 = (Φ, 2), (Φ, 1)2 = (Φs1 , 1),

(Φ, 2)0 = (Φs0 , 2), (Φ, 2)1 = (Φ, 1), (Φ, 2)2 = (Φ, 3),

(Φ, 3)0 = (Φs0 , 3), (Φ, 3)1 = (Φs1 , 3), (Φ, 3)2 = (Φ, 2),

pri čemer so s0, s1 in s2 generatorji grupe Mon(M) in je Φ ∈ F(M). Na podlagi

gornjih relacij smo definirali algoritem, prikazan na sliki 6.4, za konstrukcijo prapornega

grafa Cham(M) iz GM in posledično pokazali, da je praporni graf GCham(M) brušenega

zemljevida Cham(M) zemljevida M s kvocientno projekcijo mogoče preslikati v graf,

izomorfen simetrijskemu grafu 4Dp .

Brušeni zemljevid Cham(M) k-orbitnega zemljevida M ima manj kot 4k orbite pra-

porov, kadar imata oba zemljevida, M in Cham(M), Schläflijev simbol {6, 3}. Iz Eu-

lerjeve karakteristike zemljevida sledi, da je ploskev zemljevida s Schläflijevim simbolom

{6, 3} bodisi torus bodisi Kleinova steklenica. Hubard, Orbanić, Pellicer in Weiss v [31]

raziskujejo simetrijske tipe ekvivelarnih zemljevidov na torusu; ti so lahko ali regularni

ali kiralni ali pa imajo simetrijski tip 302 ali 6Hp . Wilson v [58] pokaže, da obstajata dve

vrsti zemljevidov tipa {6, 3} na Kleinovi steklenici in ju označi z {6, 3}|m,n| in {6, 3}\m,n\;
ti zemljevidi so 3n-orbitni. V tej disertaciji pokažemo, da če je M zemljevid na torusu

ali na Kleinovi steklenici (katerekoli od obeh vrst), potem je Cham(M) zemljevid na isti

ploskvi. Nadalje opazimo tudi, da če je M k-orbitni torusni zemljevid s Schläflijevim

simbolom {6, 3}, potem je Cham(M) k-orbitni zemljevid za k = 1, 2, 3, 6. Če je M k-

orbitni zemljevid s Schläflijevim simbolom {6, 3} na Kleinovi steklenici, potem velja 3|k
in Cham(M) je 2k-orbitni zemljevid.

A. Deza, M. Deza in V. Grishukhin v [15] s Chamt(M) označijo t-kratno uporabo op-
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eracije brušenja na zemljeviduM. Razdelek zaključimo z naslednjim izrekom, ki povzame

vse rezultate, predstavljene v tem razdelku.

Izrek 3. Naj bo M k-orbitni zemljevid in Chamt(M) zemljevid, ki ga dobimo s t-kratno

uporabo operacije posnetja na zemljevidu M, ki ima s prapornih orbit. Potem velja ena

izmed naslednjih trditev.

1. s = 4tk, 2tk ali k.

2. Če je s 6= 4tk, potem velja χ(M) = 0 (M je na torusu ali na Kleinovi steklenici)

in M je tipa {6, 3}.

3. Če je M torus tipa {6, 3} potem velja s = k in k = 1, 2, 3, 4.

4. Če je M na Kleinovi steklenici tipa {6, 3}, potem velja s = 2tk in 3|k.

Operacija prisekanja in preskoka na zemljevidih

V tem zadnjem poglavju si oglejmo operaciji prisekanja in preskoka ([45, 49]). Me-

dialno operacijo (sredinjenje) lahko razumemo kot prisekanje zemljevida na sredinskih

točkah njegovih povezav. Kadar pa sredinske točke na povezavah zemljevidaM preskočimo

in zemljevid prisekamo še naprej od njih, tako dobljeni zemljevid imenujemo preskočeni

zemljevid zemljevida M, [18]. Če oglǐsča zemljevida M postanejo lica prisekanega zeml-

jevida, potem je dobljeni zemljevid dual zemljevida M. Tako npr. s prisekanjem reg-

ularnega poliedra dobimo nekatera od 13 arhimedskih teles, kakor je razloženo v [7] in

[52].

Operacija prisekanja sestoji iz zamenjave oglǐsč zemljevida z lici, pri čemer imajo nova

lica dvakrat več oglǐsč kot prvotna lica. Med množico lic prisekanega zemljevida Tr(M)

zemljevidaM in množico oglǐsč in lic zemljevidaM obstaja korespondenca: F (Tr(M)) =

V (M)∪F (M). Poleg tega za vsako povezavo zemljevidaM obstajata natanko dve oglǐsči

v Tr(M) tako, da sta ti oglǐsči povezani z neko povezavo, če bodisi obe oglǐsči pripadata

skupni povezavi v M ali če si ustrezni povezavi v M delita oglǐsče in pripadata istemu

licu. Vsako oglǐsče v Tr(M) ima valenco 3, torej prisekani zemljevid Tr(M) vsebuje

2|E(M)| oglǐsč in 3|E(M)| povezav.

Vsak prapor Φ ∈ F(M) je razdeljen na tri različne prapore prisekanega zemljevida

Tr(M) (slika 7.2); torej F(Tr(M)) = F(M)×{0, 1, 2}. Sosednost praporov v F(Tr(M))

je opisana z naslednjimi relacijami:

(Φ, 0)0 = (Φs1 , 0), (Φ, 0)1 = (Φs2 , 0), (Φ, 0)2 = (Φ, 2);

(Φ, 1)0 = (Φs0 , 1), (Φ, 1)1 = (Φ, 2), (Φ, 1)2 = (Φs2 , 1);

(Φ, 2)0 = (Φs1 , 2), (Φ, 2)1 = (Φ, 1), (Φ, 2)2 = (Φ, 0),
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kjer so s0, s1 in s2 različni generatorji Mon(M). Naj bodo t0, t1 in t2 različni generatorji

Mon(Tr(M)), pri čemer je (t1t2)3 = id. Zadnja enakost sledi iz dejstva, da imajo vsa

oglǐsča zemljevida Tr(M) valenco 3.

Predstavimo še ustrezni algoritem za konstrukcijo prapornega grafa priekanega zeml-

jevida Tr(M) iz GM (slika 7.3). Takšen algoritem inducira particijo (A0,A2,A1) množice

oglǐsč GTr(M), pri čemer je Ai := {(Φ, i)|Φ ∈ F(M)} za i = 0, 1, 2. Dobimo torej pra-

porni graf GTr(M) prisekanega zemljevida Tr(M) zemljevida M, ki ga lahko s kvocientno

projekcijo preslikamo v graf, izomorfen simetrijskemu grafu 30.

Orbanić, Pellicer in Weiss v [45] pokažejo, da je prisekani zemljevid Tr(M) k-orbitnega

zemljevidaM ali k-orbitni ali 3k
2

-orbitni (če je k sod) ali pa 3k-orbitni zemljevid; na pod-

lagi tega karakterizirajo simetrijske tipe vseh prisekanih zemljevidov k-orbitnega zemlje-

vida za k ≤ 3, pri čemer so uporabili oštevilčenje odsekov ([9, Poglavje 2]). Avtorji tudi

predstavijo primere, ko je katerikoli izmed teh pogojev izpolnjen, nekaj teh primerov je

predstavljenih na slikah 7.4–7.6. Avtorji v [45] pokažejo tudi, da s še enkratno uporabo

oštevilčenja odsekov na k-orbitnem zemljevidu, katerega prisekani zemljevid Tr(M) je
3k
2

-orbitni ali k-orbitni zemljevid, dobimo takšno dvodelno particijo oglǐsč GM, da je GM
kvocientni graf, izomorfen grafu simetrijskega tipa 201. Za regularni zemljevidM in pod-

grupo G = 〈ρ0, ρ1, ρ2ρ1ρ2〉 grupe avtomorfizmov Aut(M) je bilo pokazano, da je prisekani

zemljevid Tr(M) regularen natanko takrat, ko je [Aut(M) : G] = 2 in obstaja avtomor-

fizem τ ∈ Aut(G), ki izmenja ρ0 in ρ1 ter fiksira ρ2ρ1ρ2.

Na podlagi rezultatov o prisekanju k-orbitnega zemljevida v [45] (predlogi 7.2–7.4)

za k ≤ 3 podamo razširitev teh rezultatov na k ≤ 7 in k = 9. Tako dobimo kar nekaj

trditev (7.5–7.11), katerih rezultati so prikazani v tabelah 7.1 in 7.2. Zaradi velikega

števila primerov za k = 8 je prisekanje 8-orbitnih zemljevidov izpuščeno.

Kasneje definiramo še dvodimenzionalno subdivizijo (dual prisekanega zemljevida)

zemljevida in preskočeni zemljevid (prisekanje dualnega zemljevida), in dobimo klasi-

fikacijo vseh možnih simetrijskih grafov preskočenih k-orbitnih zemljevidov za k ≤ 7 in

k = 9 (tabeli 7.31 in 7.3).

Opombe

Disertacija odpira nove probleme v zvezi s simetrijskimi tipi manipleksov oziroma

v zvezi z uporabo različnih operatorjev na manipleksih. Kar je v tem smislu v tej dis-

ertaciji narejeno za 2-maniplekse, je mogoce posplošiti in na podoben način karakterizirati

simetrijske tipe k-orbitnih manipleksov.



Izjava

Izjavljam, da je disertacija plod lastnega raziskovalnega dela.

Maŕıa del Ŕıo Francos.
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