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Abstract

In this thesis we present some results living in the intersection between graph theory and linear
algebra. We introduce the subject of algebraic graph theory presenting some general results from
this area. In particular we show how certain algebraic objects such as matrices and polynomials
can be used to gain structural information about graphs. We then introduce two graph polynomi-
als namely the chromatic polynomial and its generalization—the Tutte polynomial. We present a
counterexample to a conjecture of J. Xu and Z. Liu about the chromatic polynomial and degree
sequences.

We then turn our attention to matrices associated with graphs namely the adjacency matrix and
distance matrix. We present some results in the context of strongly regular graphs. In particular we
show a connection between graphs maximizing the number of cycles with length matching their
odd girth and Moore graphs. Continuing with strongly regular graphs we present a classificational
result for (75, 32, 15, 16) strongly regular graphs. The approach is based on the so called star
complement technique developed by Cvetković and Rowlinson.

Math. Subj. Class. (2010): 05C12, 05C50, 05C31, 05C75

Keywords: adjacency matrix, strongly regular graph, chromatic polynomial, Tutte polynomial,
convex cycle
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Povzetek

V disertaciji predstavimo nekaj rezultatov, ki ležijo na preseku med teorijo grafov in linearno al-
gebro. Predstavimo področje algebraične teorije grafov in vpeljemo nekaj znanih rezultatov iz
tega področja. Natančneje, pokažemo, kako nam lastnosti grafovskih polinomov in matrik do-
ločajo strukturne lastnosti ustreznih grafov. Konkretneje se osredotočimo na matriko sosednosti,
razdaljno matriko in kromatični polinom. V kontekstu kromatičnega polinoma konstruiramo ne-
skončno družino protiprimerov za domnevo J. Xu-ja in Z. Liu-ja.

V nadaljevanju disertacije se osredotočimo na pojem krepko regularnih grafov in razvijemo ne-
kaj njihovih osnovnih lastnosti. Med drugim pokažemo tudi ekstremalno povezavo med številom
konveksnih ciklov ter poddružino krepko regularnih grafov - Moorovih grafov. Konec posvetimo
problemu klasifikacije krepko regularnih grafov. S pomočjo metode zvezdnega komplementa kla-
sificiramo (75, 32, 15, 16) krepko regularne grafe.

Math. Subj. Class. (2010): 05C12, 05C50, 05C31, 05C75

Ključne besede: matrika sosednosti, krepko regularen graf, kromatični polinom, Tuttov polinom,
konveksni cikel
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Chapter 1

Introduction

1.1 Basic graph theoretical notions

Let V be a finite set. The set of all subsets of V that have cardinality k is denoted by
(V
k

)
. A graph

G with vertex set V (G) = V and edge set E(G) = E is a pair (V,E) where E ⊆
(V

2
)
. While the

presented definition of a graph is quite abstract, graphs are arguably among the most applicative
mathematical objects, mainly due to their extensive occurrence in chemistry, social theory andmost
notably computer science. Indeed many practical problems can be modeled with the underlying
notion of a graph. One among many is the representation of a computer network where vertices
are computers and an edge represents a network connection between the two computers. Given
its applicability it is not surprising that graph theory witnessed enormous development in recent
years. To get an overview of some classical results in this field we refer the reader to [47], [20]
and [29]. In the remaining part of this chapter we only mention the notions and results that are of
relevance for our thesis.

If for two vertices x, y ∈ V (G) the set {x, y} belongs to E(G) then we say that x and y are
adjacent and we write x ∼G y omitting the subscript whenever the underlying graph is clear from
the context. For a vertex v ∈ V (G) we say that the degree of v, denoted by d(v), is the number
of vertices adjacent to v. The set of all such vertices is denoted by NG(v). The order and size
of G are the cardinalities of V (G) and E(G) respectively. If u and v are vertices attaining the
minimal (maximal, respectively) degree of G then we define δ(G) := d(u) and ∆(G) := d(v)
respectively. If δ(G) = ∆(G) = k then we say that G is regular and of valency k. An example
of a regular graph is the complete graph with vertex set V = {1, . . . , n} and

(V
2
)
as its edge set.

We denote it byKn. The fact that the underlying vertex set ofKn is {1, . . . , n} is just for the sake
of convenience and indeed any n-set would do. The following ambivalence is modeled with the
notion of isomorphism. LetG andH be two graphs. If f : V (G)→ V (H) is a bijection such that
for any x, y ∈ V (G) we have

x ∼G y ⇐⇒ f(x) ∼H f(y) ,

then we say that f is an isomorphism and that G and H are isomorphic. We write G ∼= H . If
G = H then we say that f is an automorphism ofG. The set of all automorphisms of a graphG is
denoted by Aut(G) and forms a group under the operation of functional composition. For a graph
G its complement is defined as the graph with the same vertex set and edge set(

V (G)
2

)
\ E(G) ,

1



Figure 1.1: The most famous object in graph theory—the Petersen graph.

and is denoted by G. If G is isomorphic to G then we say that G is self-complementary. If e is an
edge of G then we define G − e to be the graph with vertex set V (G) and edge set E(G) \ {e}.
The graph G − v where v ∈ V (G) is defined similarly. The operation of contraction of an edge
e = {x, y} is denoted by G/e and is defined as the graph with vertex set V (G − x) and edge set
E(G − x) ∪ {{x, x′} | x′ 6= x ∧ x′ ∼G y}. In our thesis we will encounter another operation of
constructing graphs, the so called line graph. The line graph of G, denoted as L(G), is the graph
whose vertex set is E(G) and two vertices f, f ′ ∈ V (L(G)) are adjacent if and only if f ∩ f ′ 6= ∅.
An example of a line graph is the so called Petersen graph depicted on Figure 1.1. It can be seen
that the Petersen graph is in fact L(K5). Another well known construction of graphs is obtained
by performing the so called Cartesian product operation on graphs. The Cartesian product of two
graphs G andH is the graph denoted by G�H with vertex set V (G)× V (H) where adjacency is
defined as

(u, v) ∼G�H (u′, v′) ⇐⇒ u = u′ ∧ v ∼H v′ or u ∼G u′ ∧ v = v′ .

Example 1.1.1. A classical example of a graph obtained by the Cartesian product operation is the
so calledcube graph of dimension n which is

�n
i=1K2 ,

and is denoted byQn. An equivalent definition of the n-cube is to consider the graph whose vertex
set is comprised of all binary strings of length n. Two vertices are adjacent if and only if the
respective bit strings differ in precisely one coordinate. Figure 1.2 depicts a standard drawing of
the 4-cube. Given a vertex v its antipodal vertex is a vertex v whose bitstring corresponds to the
binary complement of the binary string represented by v.

A subgraphH of G is a graph with the property that E(H) ⊆ E(G) and V (H) ⊆ V (G). We
writeH ⊆ G. If for every pair of distinct vertices x, y ∈ V (H)we have that x ∼G y =⇒ x ∼H y
then we say that H is an induced subgraph of G. For a set S ⊆ V (G) we denote with G[S] the

2
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Figure 1.2: The 4-cube.

induced subgraph ofG with vertex set S. IfH ⊆ G andH is isomorphic to a complete graph then
we say that H is a clique of G. The largest k such that Kk is a subgraph of G is called the clique
number of G and is denoted by ω(G). The problem of determining the clique number of a given
n-vertex graph is notoriously hard even if we want to settle for an approximate solution [43]. In
Chapter 4 we show how using symmetries can speed up state of the art algorithms for the clique
problem.

A walk W in G is a sequence of vertices v1, . . . , vk such that for every 1 ≤ i < k we have
vi ∼ vi+1. If all the vertices ofW are distinct then we callW a path of length k − 1. If v1 = vk
and the vertices v2, . . . , vk−1 are distinct then we say that W is a cycle of G with length k + 1.
If for every pair of vertices u, v of G there is a path from u to v then we say that G is connected.
The length of a shortest path from u to v is denoted by dG(u, v). The diameter of G denoted by
Diam(G) is defined as the expression maxu,v∈V (G) dG(u, v). The girth of G is the length of a
shortest cycle in G. If G has a cycle of length n then we say that G is hamiltonian. If G is a
connected 2-regular graph with n vertices then we call G an n-cycle and denote it as Cn. If we
introduce a new vertex c 6∈ V (Cn) and join it to every vertex of Cn we obtain the so called wheel
graph denoted byWn+1. The edges incident with the vertex of degree n are called its spokes.

1.1.1 Graph colorings

Suppose ck : V (G) → {1, . . . , k} is a function such that for any two vertices x, y ∈ V (G) we
have x ∼ y ⇒ c(x) 6= c(y). In this case we say that c is a proper coloring. The least k for which
G admits a proper coloring ck is called the chromatic number of G and is denoted by χ(G). Since
χ(Kn) = n it follows that χ(G) ≥ ω(G). While, by definition, χ(G) = k implies the existence of
a proper coloring ck for G, the coloring itself need not be unique and indeed in most cases this is
not so. If one denotes by ĉk the number of proper k-colorings of G then the chromatic polynomial
is defined as the function PG : R→ R with the property that for every natural number k we have

pG(k) = ĉk .

3



Let x ∼ y and let S(G) be the set of all proper k-colorings ofG. Notice that a proper coloring
of S(G − e) is a proper coloring of G if and only if x and y are assigned distinct colors. In other
words S(G) = S(G− e) \ S(G/e) and hence

Proposition 1.1.1. If e = {x, y} is an edge of G then pG(k) = pG−e(k)− pG/e(k).

Since pK1(k) = k it is not hard to see that an inductive application of Proposition 1.1.1 justifies
naming pG a polynomial.

Example 1.1.2. Asmentioned, pK1(k) = k and more generally pKn(k) = k(k−1) · · · (k−n+1).

Example 1.1.3. IfG has precisely two connected componentsG1 andG2 then, since one can color
G1, G2 independently, we have pG(k) = pG1(k)pG2(k).

Example 1.1.4. If T is a tree with n vertices and e = {u, v} where u is a leaf of T then by the
deletion-contraction recurrence we have pG(k) = k · pT−u− pT ′(k) where T ′ = T/e and is a tree
with n−1 vertices. Applying this argument on T ′ inductively we deduce that for any n-vertex tree
T we have pT (k) = k(k − 1)n−1. As it turns out, the converse is true as well.

Example 1.1.5. If Cn is the cycle graph and e one of its edges then pCn(k) = pCn−e − pCn−1(k)
sinceCn−e is a tree we can deduce from the previous example that pCn(k) = (k−1)n+(−1)n(k−
1).

Example 1.1.6. Let v be the vertex of largest degree in a wheelWn. If we have k available colors to
colorWn and we color v with one of the k colors then there are k−1 remaining choices for coloring
the remaining vertices ofWn − v. Hence PWn = kpCn(k − 1) = k(k − 2)n + (−1)nk(k − 2).

In Chapter 2 we establish some additional properties of pG(k).

1.2 Graph matrices and spectral graph theory

In this section we shortly review the notions and results needed in order to smoothly follow the
subsequent results in this thesis. If G is a simple undirected graph with vertex set {v1, . . . , vn}
then we denote byAG = (ai,j)ni,j=1 its adjacency matrixwhich is a n×nmatrix such that ai,j = 1
if the vertices vi and vj are adjacent and 0 otherwise.

Letwki,j be the number of walks from vi to vj that have length k. The first result that we present
relies on no other notion.

Proposition 1.2.1. With the above notation we have Ak = (wki,j)ni,j=1.

Proof. Our claim admits an easy proof by induction. If k = 0 or k = 1 then the statement clearly
holds. Fix 1 ≤ i, j ≤ n. Notice that for any k > 0 by the definition of matrix product

wk+1
i,j =

n∑
`=1

wki,`a`,j .

But the last expression counts the number of walks of length k to the neighbors of vi which is
precisely the number of (k + 1) walks from vi to vj .

4



Let us remark that Proposition 1.2.1 gives a way to compute the diameter of a graph in time
complexity O(nω log2 n) where ω < 2.373 is the constant of the matrix multiplication algorithm.
Assuming that G is connected, the diameter of G is the least natural number k such that Ak has
no zero entry. In order to find the least such k we can use bisection on the set {1, . . . , n} and
in order to compute Ak we can use exponentiation by squaring which requires O(logn) matrix
multiplications. There are strong indications that in terms of time complexity this is in fact an
optimal algorithm [66].

The matrix AG is a real symmetric matrix implying that its eigenvalues are real. By the term
eigenvalues of G we will mean the eigenvalues of AG which we will denote as

λ1(G) ≥ · · · ≥ λn(G) .

Whenever our graph is clear from the context we will omit specifying it and simply write λi to
denote its ith eigenvalue.

Many structural results about G can be obtained from the eigenvalues of AG and one the first
such results that we present is a result of Harary [42] dating back to the year 1962.

For a subgraphH of G let c(H) be the number of connected components ofH that are cycles
and r(H) the number of connected components that are isomorphic to K2. Let Cn(G) be the set
of all spanning subgraphs of G that are the disjoint union of cycles and K2. With this notation in
mind we have:

Theorem 1.2.2. For every simple graph G it holds

detAG =
∑

H∈Cn(G)
(−1)r(H)2c(H) .

Proof. Recall that by definition

detAG =
∑
π∈Sn

sgn(π)a1,π(1) · · · an,π(n), (1.1)

where Sn is the set of all permutations of {1, . . . , n}. Le us fix a permutation π such that the
respective summand is nonzero. Notice that since the diagonal elements of AG are zero it follows
that π has no fixed point. Hence π can be expressed as the product of disjoint cycles whose length
is at least 2. If (x, y) is a cycle of π then clearly x ∼ y and more generally if (x1, x2, · · · , xk) is a
cycle of π then for every 1 ≤ i < k we have

xi ∼ xi+1 ,

as well as x1 ∼ xk. In other words, the expression sgn(π)a1,π(1) · · · an,π(n) is nonzero whenever
the cycles of π represent a disjoint union ofK2s and cycles ofG with an implicit orientation given
by π. Hence every elementH ∈ Cn(G) gives 2c(H) summands to expression (1.1) as the direction
of each of its cycles can be picked up arbitrarily. It remains to argue that sgn(π) = (−1)r(H),where
H is the subgraph of G corresponding to π. Let co, ce be the number of connected components
of H having odd and even order respectively. By definition sgn(π) = (−1)ce . Now if ni is the
number of connected components of H having order i then the equation

∑n
i=2 ini = n implies

that co ≡ n (mod 2). Since

r(H) = n− (ce + co) ≡ ce (mod 2) ,

the result follows.

5



While the result itself may not look useful at first glance, let us present some of its implications.
Let p(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn be the characteristic polynomial of AG. Recall that

the coefficient ci is the sum of the determinant of all principal i× i submatrices of AG. Hence we
have

Proposition 1.2.3. The coefficients of the characteristic polynomial of AG satisfy

(−1)ici =
∑

H∈Ci(G)
(−1)r(H)2c(H) .

As observed by Sachs [68] this gives a way to determine the odd girth of G and in particular
to count the respective number of such cycles.

Corollary 1.2.4. Let G be a graph with odd girth 2r + 1 and let

p(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn,

be the characteristic polynomial of AG. Then

c3 = c5 = · · · = c2r−1 = 0,

and the number of (2r + 1)-cycles in G equals

−c2r+1/2 .

In Chapter 3 we will use Corollary 1.2.4 to count the number of 5-cycles in Moore graphs. At
this point let us remark that, among other things, Corollary 1.2.4 can be used to test if an n-vertex
graph has a triangle. Indeed G is triangle-free if and only if tr(A3) = 0. Hence this gives us an
algorithm for testing for triangles having time complexity asymptotic toO(nω). As it turns out this
is currently the best possible algorithm for testing triangle-free graphs. Any improvement to the
matrix multiplication algorithm would thus bring an improvement for the algorithm of recognizing
triangle-free graphs. Somehow surprising is the fact that the converse is true as well. Any improve-
ment to the triangle-testing algorithm would yield an improvement for the matrix multiplication
algorithm. The precise implications can be found in [74].

As expected, the adjacency matrix is not the only matrix studied in graph theory. Among others
there is the so called Laplacian matrix defined as LG = ∆G −AG. Here ∆G is the matrix whose
diagonal is d(v1), . . . , d(vn) and all off-diagonal elements are zero. While just a slight modification
of the adjacency matrix, the eigenvalues of the Laplacian matrix gives a large number of structural
properties of the underlying graph. Among other things it is related to the number of spanning
trees of G, maximum cuts, mean distance as well as expanding properties. For a survey on the
Laplacian matrix we refer to [61]. While we will not encounter the Laplacian matrix in this thesis
we will make a short excursion into the topic of the distance matrix of a graph. Assuming that G
is a connected graph, its distance matrix DG = (di,j)ni,j=1 is defined as the matrix with entries
di,j = dG(vi, vj). The structure of this matrix is much more complex than that of the adjacency
matrix or the Laplacian matrix, hence there are comparably less results about its relationship with
structural properties of G.

6



1.2.1 Interlacing

Given two sequences of real numbers λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm, where n ≥ m, we say
that {µi}mi=1 interlaces {λi}ni=1 if

λi ≥ µi ≥ λn−m+i for i ∈ {1, . . . ,m} .

The well-known interlacing principle states that the eigenvalues of an induced subgraph of G
interlace the eigenvalues ofG, see for example [39] or [36]. Many results in algebraic graph theory
are based on the interlacing principle which sometimes gives rise to unexpected results. A well-
known such example is the folklore proof that the Petersen graph is not hamiltonian. Indeed, if
the Petersen graph P contains a cycle C of length 10 then since L(C) = C the line graph of P
must contain C as an induced subgraph. Now by computing the eigenvalues of L(P) we see that
λ7(L(P)) = −1 while λ7(C) = −1

2
√

5 + 1
2 and hence by the interlacing principle C is not an

induced subgraph of L(P). In other words P is not hamiltonian.
For our subsequent purposes we will need a more general statement that we call the partitioned

interlacing criterion [39, Corollary 2.3]. We state it as follows. Suppose V = (V1, . . . ,Vk) is a
partition of the vertices of G. For i 6= j let e(Vi,Vj) denote the number of edges between the
vertices of Vi and Vj if i 6= j, and let e(Vi) denote the number of edges in the graph induced by Vi.
Consider the k × k matrix AV = (ai,j)ki,j=1, where

ai,j =


e(Vi,Vj)
|Vi| if i 6= j ,

2e(Vi)
|Vi| if i = j .

As it turns out, the eigenvalues of AV interlace the eigenvalues of G. For the sake of convenience
we state the mentioned fact in the following proposition.

Proposition 1.2.5. Let G be a graph and V a partition of its vertices. Then, the eigenvalues of G
are interlaced by the eigenvalues of AV .

The application of the interlacing principle is often used to determine whether a graph H is
an induced subgraph of G. In cases where G and H are comparably large graphs it may be com-
putationally infeasible to determine whether H is an induced subgraph of G. In such cases the
interlacing criterion can quickly discard certain graphs H from being induced subgraphs of a tar-
get graph G. As we will see this becomes especially useful when the target graph G is in fact not
known but its eigenvalues are.

Before moving to the next section let us illustrate how to use Proposition 1.2.5 in order to bound
the independence number of a k-regular graphG. The first to observe the following (unpublished)
property was Hoffman [35, pp. 204]

Proposition 1.2.6. If G is a k-regular graph of order n and λn is its smallest eigenvalue, then

α(G) ≤ − nλn
k − λn

.

Proof. Let S ⊂ V (G) be an independent set of G and consider the partition V = {S, V (G) \ S}.
Then the matrix

AV =
(

0 k
k|S|
n−|S| k − k|S|

n−|S|

)

has eigenvalues k and |S|k
|S|−n . Proposition 1.2.5 implies that |S|k|S|−n ≥ λn and hence the result

follows.

7



As a final note let us remark that the above result can be generalized to non-regular graphs as
well [36].
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Chapter 2

The Chromatic polynomial

The notion of the chromatic polynomial dates back to 1912 and was introduced by Birkhoff [18]
as a way of attacking the 4-color conjecture. The later problem is equivalent to the condition that
pG(4) > 0 for every planar graph G. While Birkhoff’s attempt proved fruitless it nevertheless
initiated a rich area of graph theory that sprouted many interesting results. From the analytic point
of view he and Lewis were able to prove that for any x ≥ 5 we have pG(x) > 0 and posed the
following—still open—conjecture.

Conjecture 1. For every planar graph G and x ∈ (4, 5) we have pG(x) > 0.

The study of the chromatic polynomial continued and in 1968 Read published his seminal pa-
per [65] on the chromatic polynomial. Besides proving some basic properties about pG—a subject
that we explore in the next section—he also posed many interesting problems that are open to this
day. Among other things he defined the notion of chromatic equivalence. We say that two graphs
G,H are chromatically equivalent whenever pG = pH . A graph G is chromatically unique if it is
determined by its chromatic polynomial. That is, if pG = pH thenG andH are isomorphic. It can
be seen that an example of such a graph is the complete graphKn and the cycle graphCn. Another
example is the class of wheel graphsWn whenever n is odd. For n is even it is known thatW6 and
W8 are not chromatically unique (see Figure 2.1) but W10 is [54]. In particular it is conjectured
that in fact all large enough wheels are determined by their chromatic polynomials.

Conjecture 2. For every n ≥ 10 the wheel graphWn is chromatically unique.

The reason that it is easier to establish unique chromaticity for the wheel on an odd number of
vertices is the fact that such graphs are uniquely 3-colorable. That is,W2k+1 has only one proper
coloring up to a permutation of the color classes. By the propositions established in our next section
we will see that if G is chromaticaly equivalent to Wn then G must be a 2-connected graph with
n vertices, 2n edges and n triangles. In addition the number of its induced 4-cycles must equal
twice the number of its number of 4-cliques. Using McKay’s Nauty [58] program with the PRUNE
directive we generated all such graphs on 12 vertices. We have verified:

Proposition 2.0.7. The wheel graphsW12 andW14 are chromatically unique.

Removing spokes fromwheels makes it easier to establish their chromatic uniqueness and there
are many results in this direction, see for example [31]. The study of chromatically unique graphs
is a rich field with many beautiful results. For a survey on this subject see [51] and [52].

In this chapter we first establish some known properties of the chromatic polynomial. In partic-
ular we show that the chromatic polynomial encodes certain graph invariants which are not directly

9



Figure 2.1: Graphs chromatically equivalent toW8 andW6 respectively.

related to the chromatic number. We then focus on the problem of constructing a family of graphs
with the property that each graph of the family does not have the same degree sequence as its com-
plement, yet it has the same chromatic polynomial. We finish by generalizing this result to the Tutte
polynomial and posing an open problem. The described constructions were first presented in [11].

2.1 Some properties of the chromatic polynomial

In this section we briefly summarize some well-known properties of the chromatic polynomial.
We specifically focus on properties related to its coefficients. Clearly, the constant term is zero
and in what follows we establish what happens with the coefficients of higher degree. For ease of
expression, let us denote by ci(G) = pi where pG(k) =

∑n
i=1 pik

n−i.

Proposition 2.1.1. Let G be a graph with n vertices. Then pn−1(G) 6= 0 if and only if G is
connected.

Proof. If G has c connected components then its chromatic polynomial is the product of the chro-
matic polynomials of its connected components. Since the chromatic polynomial of each connected
component is divisible by k the chromatic polynomial of G must be divisible by kc and hence the
linear term coefficient of pG is nonzero. Conversely, if G is connected and is not a tree then it
has a cycle C. By taking an edge e from C we have that G/e and G − e are connected graphs.
Since the stated claim holds for trees it now holds for any connected graph by a direct inductive
argument.

Proposition 2.1.1 can be generalized to show that if the first non-zero coefficient of pG(k)
occurs at the term kc, then G has c connected components. We continue establishing results for
the coefficient of pG(k).

Proposition 2.1.2. For every graph G we have c0(G) = 1.

10



Proof. The claim quickly follows by an induction argument on the number of edges of G. If G ∼=
Kn then the claim is obviously true. Otherwise let e be an edge of G. By the deletion-contraction
recurrence the leading coefficient of pG(k) is the leading coefficient of pG−e(k) and hence the
claim follows.

Before establishing our next claim let us introduce an equivalent definition of the chromatic
polynomial. Let mk(G) be the number of partitions of V (G) into k independent sets. Then the
chromatic polynomial of G satisfies

pG(k) =
n∑
i=1

mi(G)ki ,

where ki = k(k−1) · · · (k− i+ 1) is the falling factorial symbol. Indeed every partition of V (G)
into k independent sets gives rise to a proper coloring of G. Conversely for every partition into r
independent sets we can color the vertices in the independent sets in k(k−1) · · · (k− r+ 1) ways.
With this in mind we are now in the position to prove our next two claims.

Proposition 2.1.3. If G is a n-vertex graph withm edges then the coefficient of c1(n) = −m.

Proof. By the remark above, the coefficient of kn−1 in pG(k) equals

−
(
n

2

)
mn(G) +mn−1(G) .

Consider now a partition of V (G) into n−1 independent sets. Clearly such a partition is comprised
of n− 2 singletons and a pair {x, y} where x 6∼ y. Hence every such partition is uniquely defined
by taking two non-adjacent vertices. In other wordsmn−1 =

(n
2
)
−m and hence our claim follows

sincemn(G) = 1.

The interpretation of the coefficient of pG(k) can be extended further.

Proposition 2.1.4. For a graph G of size m we have c2(G) =
(m

2
)
− t, where t is the number of

triangles of G.

Proof. We prove the claim by induction on m. For m ∈ {0, 1, 2} the claim clearly holds. By the
deletion-contraction recurrence we have

c2(G) = c2(G− e)− c1(G/e) ,

where e is an edge of G. Let te, te be the number of triangles of G containing and not containing
e, respectively. By the induction hypothesis then c2(G − e) =

(m−1
2
)
− te. The graph G/e may

not be simple. In fact the contraction of e produces precisely te pairs of multiedges. Hence, since
G/e is simple, te edges are removed from it. By Proposition 2.1.4, c1(G/e) encodes the number
of edges of G/e and in particular −c1(G/e) = (m − 1) − te. Since te + te is in fact the number
of triangles of G, the claim follows.

The interpretation of the coefficients of pG(k) can be carried further although the respective
expressions get more and more complicated. Let c4(G) be the number of induced 4-cycles of G
and k4(G) the number of its 4-cliques. Using a slightly more involved argument, Farrell [34] has
proved the following result.
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Theorem 2.1.5. The coefficient of kn−3 of pG(k) is

−
(
m

3

)
+ (m− 2)t(G) + c4(G)− 2k4(G) .

There are also certain global results about the coefficients of the chromatic polynomial. A first
result in this direction is the fact that the coefficients of pG(k) alternate in sign. The next one is
easily proved by an inductive application of the deletion-contraction recurrence.

Proposition 2.1.6. If G is a n-vertex graph and cm is the coefficient of km in pG(k) then cm ≥ 0
if n ≡ m (mod 2) and cm ≤ 0 otherwise.

The study of the global properties of the coefficients of the chromatic polynomial received
a lot of attention in the previous century. For example the notorious unimodal conjecture asked
whether the coefficient of pG(k) in fact form a unimodal sequence. The problem has been posed by
Read [65] in 1968 and received a lot of attention. The claim was recently established by Huh [46].
His argument is involved and uses the theory of hypersufraces.

Theorem 2.1.7. If pG(k) =
∑n
i=1 aik

i is the chromatic polynomial ofG then there exist am such
that

|an| ≤ |an−1| · · · ≤ |am| ≥ |am−1| ≥ · · · ≥ |a1| .

The interpretation of the coefficients of pG(k) also offers a generalization that was first observed
by Whitney [73] in 1932. Suppose the edges of G have an ordering e1, . . . , em. We say that
B ⊆ E(G) is a broken circuit if there is an edge e` 6∈ B such that B ∪ {e`} is a cycle and i ≥ `
for every i such that ei ∈ B. With this notion in mind we have.

Theorem 2.1.8. Suppose the edges ofG are ordered and let pG(k) =
∑n
i=1(−1)ici(G)kn−i. Then

ci(G) is the number of subgraphs of G having i edges and no broken circuits.

We finish this section by presenting a so called expansion expression for the chromatic poly-
nomial. In what follows let the function c(F ), where F ⊆ E(G) count the number of connected
components in the graph (V (G), F ). We have

Theorem 2.1.9. The chromatic polynomial pG(k) satisfies the expansion formula.

pG(k) =
∑

F⊆E(G)
(−1)|F |kc(F ) .

Proof. It is enough to prove the claim for k ∈ N. For an edge e = {u, v} define the set

Me = {κ : V (G)→ {1, . . . , k} | κ(u) = κ(v)} .

By definition, the set of all proper k-colorings of G is⋂
e∈E(G)

Me .

But by the principle of inclusion-exclusion we have

|
⋂

e∈E(G)
Me| =

∑
F⊆E(G)

(−1)|F ||
⋂
f∈F

Mf | .

But |
⋂
f∈F Mf | = kc(F ). Indeed, a function κ ∈ Mf is monochromatic on each edge of F

and hence is constant on every connected component of F . Conversely for every such spanning
subgraph we obtain such a function by assigning a color class to each connected component.
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There are many additional results about the chromatic polynomial that are out of scope for our
thesis. In fact, there is an entire book devoted to the subject of the chromatic polynomial [30] that
we recommend the readers to check.

2.2 The Akiyama-Harary problem

In the late 1970’s Akiyama andHarary published a series of papers [3, 4, 5, 6, 2, 8, 7, 1] initiating the
study of graphs that match their complements in certain graph invariants. Their inquiry initiated a
rich area of graph theory that is alive to this day [59]. Part of their exploration also involved posing
open problems and in [7] they asked whether a non-self-complementary graphG can have the same
chromatic polynomial as its complement. Notice that this is quite a restrictive condition since not
only must G and G have the same number of edges, triangles and chromatic number but for every
natural number k the number of proper k-colorings ofGmust be the same as the number of proper
k-colorings ofG. Nevertheless it was confirmed by Xu and Liu [75] that such graphs indeed exists
and that the smallest example has 8 vertices. They in fact constructed a family of such graphs all
of them having the property thatG andG share the same degree sequence. This lead them to pose
the conjecture

Conjecture 3. If a graph G has the property that pG(k) = pG(k) then G has the same degree
sequence as G.

As it turns out, their conjecture is false. In what follows we present an infinite family of graphs
not adhering to this condition.

Finally we turn our attention to a more general variant of this problem. For a subset F ⊆ E(G)
we denote by c(F ) the number of connected components of the graph with edge set F and vertex
set V (G). With this in mind the Tutte polynomial of a graph G is defined as

TG(x, y) =
∑

F⊆E(G)
(x− 1)c(F )−c(E) · (y − 1)c(F )+|F |−|V (G)|. (2.1)

The Tutte polynomial TG contains much more information about the structure of G than pG
does. Indeed, it is a generalization of the chromatic polynomial and it is well known that

pG(k) = (−1)|V (G)|−k(E)kc(E)TG(1− k, 0) .

Among the many other interesting evaluations of the Tutte polynomial are TG(1, 1)—the number
of spanning trees of G and TG(2, 0), TG(0, 2) the number of cyclic and acyclic orientations of G,
respectively. For a survey of known results about the Tutte polynomial see [33].

A natural generalization of the Harary-Akiyama question following from these properties of the
Tutte polynomial is, whether there exists a non-self-complementary graph having the same Tutte
polynomial as its complement.

2.3 Chromatic polynomials and graph complements

In this section we present a family of graphs having equal chromatic polynomials as their comple-
ments but different degree sequence. We start with the graph G1 depicted on Figure 2.2 together
with its complement. Its graph6 string [57] is HCpVdZY. First, we establish thatG1 has the desired
properties.
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Figure 2.2: A graph and its complement.

Lemma 2.3.1. The graph G1 has a different degree sequence than G1 but pG1(k) = pG1
(k).

Proof. We observe that the graph G1 from Figure 2.2 has degree sequence (5, 5, 5, 4, 4, 4, 4, 3, 2)
while its complement has degree sequence (6, 5, 4, 4, 4, 4, 3, 3, 3). Using the well known deletion-
contraction recurrence for computing the chromatic polynomial of a graph we can verify that:

pG1(k) = pG1
(k) = (k − 2) · (k − 1) · k · (k − 3)2 · (k4 − 9k3 + 35k2 − 69k + 57) .

The claim of Lemma 2.3.1 can be completely verified with Sage [28] in the following way.
We need to verify that the presented graph has a different degree sequence than its complement
but equal chromatic polynomial. Since we have already given its graph6 string this becomes a
straightforward task, as the following sequence shows.

sage: G = Graph(’HCpVdZY’)
sage: Gc = G.complement()
sage: G.degree_sequence() == Gc.degree_sequence()
False
sage: G.chromatic_polynomial() == Gc.chromatic_polynomial()
True

Before showing the main claim of this section, we introduce a useful construction. Given a
graph G we form the graph Ĝ by taking a vertex disjoint 4-path P and joining every vertex of G
to both endpoints of P . Conveniently, we have Ĝ = Ĝ. Using this property it is not difficult to
establish the following claim.
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Theorem 2.3.2. There exist infinitely many graphs G not having the same degree sequence as G
but having the same chromatic polynomial as their complements.

Proof. We compute the chromatic polynomial of Ĝ. Suppose we wish to properly color Ĝ with k
colors. Let x, y be the endpoints of the 4-path P introduced in Ĝ and let x′, y′ be the respective
neighbors of x and y in P . There are essentially two different ways to color Ĝ. If we color x, y
with equal colors then there are (k−1) choices to color x′ and (k−2) colors to color y′ and hence
k(k−1)(k−2)pG(k−1) ways to properly k-color Ĝ. If x, y are colored with different colors then
we again have two cases. If y′ is colored with the same color as x then we have k(k−1)2pG(k−2)
total ways to color Ĝ. If however y′ is not colored with the same color as x we end up having
k(k − 1)(k − 2)2pG(k − 2) ways to properly color our graph using k colors. Summing up the
obtained quantities we infer

p
Ĝ

(k) = k(k − 1)(k − 2)pG(k − 1) + k(k − 1)2pG(k − 2) + k(k − 1)(k − 2)2pG(k − 2)
= k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2)).

In particular we see from the above expression that p
Ĝ

(k) is in fact a function of pG(k). The main
claim now follows quickly with an inductive argument. By Lemma 2 we have a graphG of order 9
having a different degree sequence thanG but the same chromatic polynomial. But then the degree
sequences of Ĝ and Ĝ differ while for their chromatic polynomials the above identity implies

p
Ĝ

(k) = k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2))
= k(k − 1)((k − 2)pG(k − 1) + (k(k − 3) + 3)pG(k − 2))
= p

Ĝ
(k) = p

Ĝ
(k).

Hence by using this construction iteratively we obtain an infinite family of graphs with the stated
property.

By a computer search it can be seen that there are graphs on 12 vertices that have the property
stated in Theorem 2.3.2. Hence it is easy to extend the proof of Theorem 2.3.2 to show that for every
n ≥ 9 congruent to 0 or 1 (mod 4) there exist a graphG not having the same degree sequence as
G but sharing the same chromatic polynomial.

2.4 The Tutte polynomial

A very useful property of the chromatic polynomial that we exploited in the proof of Theorem 2.3.2
is the fact that the chromatic polynomial of a graph operation is often a function of the chromatic
polynomials of its operands. Unfortunately the same is not generally true for the Tutte polynomial.
Indeed, consider two trees of order 4, the star graph K1,3 and the path graph P4. Both have the
same Tutte polynomial namely x3. Consider now their cone graph, that is the graph obtained by
adding a new vertex and joining it to all other vertices. The cone of K1,3 has 20 spanning trees
while the cone of P4 has 21 spanning trees. Hence the Tutte polynomials of the cones ofK1,3 and
P4 are different.

In order to apply the construction introduced in the previous section, we need an additional
structure of our graphs that will assure that if two graphs G and H have equal Tutte polynomials
then so do Ĝ and Ĥ .

As it turns out, the following concept is quite useful for this purpose. Let H be a spanning
subgraph of G having connected components of order h1 ≥ h2 ≥ · · · ≥ hk. We say that
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Figure 2.3: A graph whose Tutte polynomial is equal to that of its complement.

(|E(H)|, h1, h2, . . . , hk) is a subgraph description of H . Now let s(G) be the lexicographically
sorted tuple of subgraph descriptions for every subgraph ofG. We call s(G) the subgraph sequence
ofG. Observe that equation (2.1) implies that if two graphs have the same subgraph sequence then
they also have the same Tutte polynomial. The converse is of course not true as witnessed by the
above example with P4 and K1,3. However, as our next lemma asserts, the property of having the
same subgraph sequence is preserved by the construction introduced in the previous section.

Lemma 2.4.1. If G and H are graphs such that s(G) = s(H) then s(Ĝ) = s(Ĥ).

Proof. Let G′ be a spanning subgraph of Ĝ. Observe that G′ is obtained by taking a spanning
subgraph of G with subgraph description d = (|E(G′)|, g1, . . . , gk) adding the remaining four
vertices of Ĝ coming from the introduced 4-path P and finally adding some of the edges with at
least one endpoint in P . That is we add some of the edges of P and then some of the edges from
the endpoints of P to some vertices of the connected components of G.

By assumption G has the same subgraph sequence as H hence there is a bijective mapping
between their subgraph sequences. Let H ′ be the subgraph of H with subgraph sequence d that
is prescribed by such bijection. Since H ′ and G′ have the same subgraph description there is a
bijective way to map every extension ofG′ to a subgraph of Ĝ to an extension ofH ′ to a subgraph
of Ĥ . Indeed, we may assume the vertices of G and H to be ordered and then for every edge that
is added from one of the endpoints x of P to the the ith vertex of the jth component of G we add
the edge between x and the ith vertex of the jth component ofH . This is always well defined since
H and G have the same subgraph description.

In order to apply Lemma 2.4.1 we need to find a non self-complementary graph G such that
s(G) = s(G). As already noted this immediately implies TG(x, y) = TG(x, y). One of the
smallest graphs with such property has order 8 and is presented on Figure 2.3. Its graph6 string is
GCRdvK and we will denote it by H1.

Lemma 2.4.2. Let H1 be the graph defined above. Then s(H1) = s(H1) and H1 is not self-
complementary.
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Proof. Observe thatH1 andH1 both have two vertices of degree 2. InH1 these two vertices share
a common neighbor while the vertices of degree 2 in H1 have no common neighbors. Hence H1
and H1 are not isomorphic. Verifying the second part of the claim, that is s(H1) = s(H1), is a
tedious process and we have used Sage as we describe bellow.

In order to finalize the proof of Lemma 2.4.2 we define a function in Sage that accepts a graph
G and returns the respective subgraph description.

def s(Gr):
ds = []

for A in subsets(Gr.edges()):
G = Graph()
G.add_vertices(Gr.vertices())
G.add_edges(A)
cs = [len(H) for H in G.connected_components()]
ds.append([len(A)] + sorted(cs))

return sorted(ds)

It is now a matter of a few lines to verify Lemma 2.4.1.

sage: G = Graph(’GCRdvK’)
sage: Gc = G.complement()
sage: G.is_isomorphic(Gc)
False
sage: s(G) == s(Gc)
True

We are now ready to prove the main claim of this section.

Theorem 2.4.3. There exist infinitely many graphs G such that G 6∼= G but TG(x, y) = TG(x, y).

Proof. By Lemma 2.4.2 there is a non-self-complementary graph on 8 vertices such that s(G) =
s(G) which implies TG(x, y) = TG(x, y). But then, by Lemma 2.4.1, the graph Ĝ again has
the same subgraph description as its complement and is not self-complementary. Hence applying
this operation iteratively on G we end up with an infinite family of graphs possessing the stated
property.

Again as with the chromatic polynomial we can find a graph of order 9 having the properties
of Lemma 2.4.2. Hence it is possible to show in the same way as we did in the proof of Theorem
2.4.3 that for every n ≥ 8 congruent to 0, 1 (mod 4) there exist a non-self-complementary graph
of order n having the same Tutte polynomial as its complement.
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2.5 Final remarks

Wewere not able to find an example of a graphG, so thatG andG have different degree sequences
and same Tutte polynomials. A computer search indicates that such a graph would have to have at
least 16 vertices. Hence we state the following problem.

Problem 1. Find a graph G with different degree sequence than G but same Tutte polynomial or
show that such a graph does not exist.

Interestingly the analogous problem for chromatic polynomials motivated this chapter.
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Chapter 3

Strongly regular graphs

The term strongly regular graphwas introduced byBose [21] in the year 1963 in connectionwith the
notion of partial geometries that he studied in the mentioned paper. However the notion of strong-
regularity dates back at least 11more years when the concept of association schemeswas introduced
[22] within the field of statistics. In graph theoretical terms an associative scheme is a distance
regular graph and in particular a distance regular graph with diameter 2 corresponds to the notion
of strongly regular graphs. We say that a k-regular graph of order v and diameter 2 is a strongly
regular graph, SRG for short, with parameter set (v, k, λ, µ) if every pair of adjacent vertices has
precisely λ common neighbors while two non-adjacent vertices share µ common neighbors.

In this chapter we start by presenting some well known properties of strongly regular graphs.
Among other things we will compute their eigenvalues and establish certain necessary conditions
for their existence. We will continue by introducing a family of strongly regular graphs named
Moore graphs and show their extremality in the number of convex cycles. The later was part of
the work published in [12]. We finish the chapter by showing that the distance matrix of certain
strongly regular graphs has more positive than negative eigenvalues. This was part of a question
posed in [37] and the answer appeared in [10].

Before moving on to our next section, let us give a series of examples that should get us ac-
quainted with the notion of strongly regular graphs.

Example 3.0.1. The smallest example of a strongly regular graph is the 5-cycle having parameter
set (5, 2, 0, 1). The next natural example is of course the Petersen graph having parameter set
(10, 0, 3, 1). Both examples fall into the category of Moore graphs which we present in more
detail in Section 3.2.

Example 3.0.2. Consider the graph obtained by taking the 4-cube Q4 and adding edges between
pairs of antipodal vertices. Figure 3.1 depicts the obtained graph. It is easy to see that the obtained
graph is in fact a (16, 5, 0, 2) strongly regular graph. This is the unique (16, 5, 0, 2) SRG and is
known under the name Clebsch graph.

Example 3.0.3. If X is a SRG with parameter set (v, k, λ, µ) then X is again a SRG whose pa-
rameters are (v, v − k − 1, v − 2− 2k + µ, v − 2k + λ).
Example 3.0.4. For an infinite family of strongly regular graphs one can take the so called rook
graphs which are obtained by taking the Cartesian product Kn�Kn. Clearly the graph has n2

vertices and is 2n − 2 regular. Two adjacent vertices have n − 2 common neighbors (to be found
in the same fiber). If x, y are non-adjacent vertices then clearly have exactly 2 common neighbors.
HenceKn�Kn is a SRG with parameter set (n2, 2n− 2, n− 2, 2).
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Figure 3.1: The Clebsch graph.

Example 3.0.5. The triangular graph Tn is defined as the line graph ofKn. For example T3 is the
triangle, T4 is the so called octahedral graph while T5 is the complement of the Petersen graph. It
is not hard to see that Tn has n(n − 1)/2 vertices and is 2(n − 2) regular. If x, y, z are distinct
elements of {1, . . . , n} then the vertices {x, y}, {x, z} have {x, z} as a common vertex as well as
every vertex of the form {x, i} where i 6∈ {y, z}. Hence by symmetry every two adjacent vertices
of Tn have n − 2 common neighbors. Finally two non-adjacent vertices {x, y} and {z, w} have
exactly four common neighbors, namely {x, z}, {x,w}, {y, z} and {y, w}. Hence Tn is a strongly
regular graph with parameter set (n(n− 1)/2, 2(n− 2), n− 2, 4).

Example 3.0.6. Let q be a prime power such that q ≡ 1 (mod 4). The Paley graph P(q) is
defined as the graph whose vertices are the elements of GF(q), Two distinct vertices are adjacent
whenever the difference of two vertices is a square. It can be verified that Paley graphs are in fact
strongly regular with parameter set (q, (q − 1)/2, (q − 5)/4, (q − 1)/4). If q is a prime then the
corresponding Paley graphs fall into the category of so called circulant graphs. Paley graphs have
many interesting properties. Among other things, they are self-complementary and are connected
with the notion of expander graphs and quasi-random graphs [25]. In addition, the study of their
clique numbers is a notorious number theoretical problem [45].

A SRG with the parameter set (v, (v−1)/2, (v−5)/4, (v−1)/4) is called a conference graph
due to its connection with the notion of conference matrices [16]. As we can see from Example
3.0.6 every Paley graph is in fact a conference graph. However, the converse is not true. The
smallest number of vertices for which the existence of a conference graph is not known is 65 and
we record this fact in the following problem.

Problem 2. Is there a conference graph with 65 vertices?

Notice that Problem 2 in fact asks for the existence of a SRGwith parameter set (65, 32, 15, 16)
which coincidentally is also the smallest parameter set whose feasibility—at the time of writing—is
not known.
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As indicated by the above problem, a fundamental question about strongly regular graphs is
for which parameter sets does a strongly regular graph exist? For example the notorious question
about the existence of a graph of order 3250, girth 5, and diameter 2 (also known as Moore graph)
asks for the existence of a strongly regular graph with parameter set (3250, 57, 0, 1). We say that
a parameter set (v, k, λ, µ) is feasible whenever there exists a (v, k, λ, µ) strongly regular graph.
A parameter set that is not feasible will be called infeasible. In our next section we present some
necessary conditions on v, k, λ and µ that rule out some parameter sets.

These conditions still leave room for many parameters for which it is not known whether there
exists such a SRG. The state of affairs for all possible parameters on up to 1300 vertices is tracked by
Brouwer on his web site [23]. It can be seen that on up to 100 vertices there are essentially 15 param-
eter sets whose classification is still open, the smallest three being (65, 32, 15, 16), (69, 20, 7, 5),
and (75, 32, 10, 16). Given that there is no general technique for deciding whether a certain pa-
rameter is feasible, a lot of effort has been put into establishing certain structural results about
the missing SRGs. Specifically for a potential SRG X with parameters (75, 32, 10, 16), Haemers
and Tonchev [40] showed in 1996 that the chromatic number of X is at least 6. Four years later
Makhnev showed [56] that X does not contain a 16-regular subgraph. Recently Behbahani and
Lam [15] also derived some constraints about the structure of the automorphism group ofX . Par-
ticularly, they showed that if p is a prime dividing |Aut(X)|, then p = 2 or p = 3. In Chapter 4
we show that the parameter set (75, 32, 10, 16) is in fact infeasible.

3.1 Some basic properties of strongly regular graphs

In this section we present somewell known properties of strongly regular graphs. As a first example
we present an elementary feasibility condition. If X is a SRG and x ∈ V (X) then we denote by
N1(x) and N2(x) the vertices at distance 1 and 2 respectively from x. The sets N1(x), N2(x) are
also called the first and second subconstitutents of X with respect to x.

Proposition 3.1.1. If X is a (v, k, λ, µ) SRG then

(v − k − 1)µ = k(k − λ− 1) .

Proof. Let x ∈ V (X). We count the number of edges fromN1(x) toN2(x) in two ways. A vertex
y ∈ N1(x) is adjacent to x and hence must have precisely λ neighbors in N1(x) and therefore
k − λ − 1 neighbors in N2(x). Since |N1(x)| = k we deduce that there are k(k − λ − 1) edges
from N1(x) to N2(x). On the other hand every vertex y ∈ N2(x) is not adjacent to x and hence
sendsµ edges toN2(x). Since the diameter ofX is 2we have |N2(x)| = |V (X)|−k−1 = v−k−1
and thus the result follows by the double counting principle.

Proposition 3.1.1 gives us our first feasibility condition.

Example 3.1.1. The parameter set (30, 14, 3, 7) is not feasible. Indeed

(30− 14− 1) · 7 6= 14 · (14− 3− 1) ,

which is in contradiction with Proposition3.1.1.

Our second feasibility criterion comes from computing the eigenvalues of a SRG. In order to
prove the claim we will need the following lemma.
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Lemma 3.1.2. Let A be a real symmetric matrix and u, v two of its eigenvectors that correspond
to distinct eigenvalues of A. Then uT v = 0 that is, u and v are orthogonal.

Proof. Let Au = λu and Av = λv. Since A is symmetric we have

uTAv = (vTAu)T .

But then µuT v = λuT v and since µ 6= λ it must follow that uT v = 0 as claimed.

Proposition 3.1.3. The eigenvalues of a SRG with parameter set (v, k, λ, µ) are

k,
1
2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
and

1
2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
,

with respective multiplicities

1, 1
2

[
(v − 1)− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
and

1
2

[
(v − 1) + 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
.

Proof. It is not hard to see that every connected k-regular graph has k as an eigenvalue with multi-
plicity 1 and the respective eigenvector is the all-ones vector~1, see [17, p. 14]. IfX is a (v, k, λ, µ)
SRG then and x, y ∈ V (X) are two distinct vertices then the number of 2-walks from x to y is µ
if x 6∼ y and λ if x ∼ y. Hence by Proposition 1.2.1 we have the following identity

A2 + (µ− λ)A+ (λ− k)I = µJ. (3.1)

If u is an eigenvector for r 6= k then by multiplying Equation (3.1) with u and applying Lemma
3.1.2 we get that r2 + (µ − λ)r + (µ − k) = 0 and hence (after solving the quadratic equation)
that the other possible eigenvalues of A are

1
2((λ− µ)±

√
(λ− µ)2 + 4(k − µ)) .

Let us now denote the eigenvalues of AX by

r = 1
2((λ− µ) +

√
(λ− µ)2 + 4(k − µ)) ,

and
s = 1

2((λ− µ)−
√

(λ− µ)2 + 4(k − µ)) ,

with the respective multiplicities denoted by f, g. We note the following two relations

f + g = v − 1 and rf + sg + k = 0 ,
the first equation following from the fact that k has multiplicity 1 and the second from the fact
that the sum of the eigenvalues is the trace of AX . We have obtained two linear equations in two
unknowns and their solution is

f = 1
2

(
v − 1− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
and

g = 1
2

(
v − 1 + 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
,

as claimed.
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This already gives some additional infeasibility conditions since the multiplicities must be in-
tegers as we see in our next example.

Example 3.1.2. Consider the parameter set (40, 18, 10, 6). Clearly (40− 18− 1) · 6 = 18 · (18−
10−1) but

√
(10− 6)2 + 4 · (18− 6) is irrational and hence the eigenvalues of such a SRG could

not have integral multiplicities.

There are now twoways to extend Proposition 3.1.3. One is to show that in terms of eigenvalues,
strongly regular graphs are precisely the regular graphs having 3 distinct eigenvalues. In terms of
integrality we can also tell when their spectrum is integral. We give a precise formulation of both
these claims in the next two propositions.

Proposition 3.1.4. A connected regular graph is strongly regular if and only if it has precisely
three distinct eigenvalues.

Proof. Let G be a connected k-regular graph that has precisely three eigenvalues k, r and s. For
every vector orthogonal to ~1 we have that

(A− rI)(A− sI) · v = 0 ,

and therefore (A− rI)(A− sI) = αJ for some α ∈ R. But then

A2 = (r + s+ α)A+ α(J −A− I) + (rs+ α)I,

and hence the number of common neighbors between any two vertices of G only depends on
whether they are adjacent or not. Hence G is strongly regular.

As mentioned we can also describe the situation in which the eigenvalues of a SRG are integers.
Aswe shall see this happenswhenever themultiplicities of the non-trivial eigenvalues differ. Before
stating the claim we need a short lemma.

Lemma 3.1.5. If x is a rational number such that

x2 + bx+ c = 0 ,

for integers b, c then x is an integer.

Proof. Assume x = p
q where p and q are coprime. We have

(p/q)2 + b(p/q) + c = 0

and therefore p2 + bpq+ cq2 = 0. It now follows that y divides p2 and therefore q = 1 since p and
q are coprime.

Proposition 3.1.6. If f, g are the multiplicities of the non-trivial eigenvalues of a SRG with pa-
rameter set (v, k, λ, µ) then its eigenvalues are integers, unless f = g.

Proof. Let the corresponding eigenvalues be r, s. From Proposition 3.1.3 we deduce

r + s = λ+ µ. (3.2)

Finally since the trace of the adjacency matrix of a graph is 0 we have
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k + fr + gs = 0. (3.3)

If f 6= g then Equations (3.2) and (3.3) are linearly independent and hence determine r and s
uniquely. In particular since the two equations have integer coefficients it implies that both r and
s are rational. Finally since r and s were obtained as zeros of a quadratic equation it follows from
Lemma 3.1.5 that they are in fact integers.

In addition to the conditions that we just presented there are two other necessary conditions
for the feasibility of a parameter set. They are referred under the name Krein bound and absolute
bound. The former is usually stated in the more general theory of association schemes. Before
stating the two conditions let us implicitly assume that our SRG has eigenvalues k > r > s with
respective multiplicities 1, f and g. With this in mind we can state Krein condition as follows.

Theorem 3.1.7. (Krein Condition) For a strongly regular graph G with parameter set (v, k, λ, µ)
we have

(r + 1)(k + r + 2rs) ≤ (k + r)(s+ 1)2

and
(s+ 1)(k + s+ 2rs) ≤ (k + s)(r + 1)2 .

Example 3.1.3. Consider the parameter set (184, 48, 2, 16). Clearly

(184− 48− 1) · 16 = 2160 = 48 · (48− 2− 1) .

Similarly, the necessary conditions for the integrality of the eigenvalues show that such a graph
would have eigenvalues 48, 2,−16 with respective multiplicities 1, 160 and 23. It is not hard to
verify that the second inequality of the Krein condition is not satisfied and hence that the parameter
set (184, 48, 2, 16) is in fact not feasible.

The absolute bound is related to bounds on the spherical two-distance sets in Rf and Rg. Its
formulation in the context of strongly regular graphs is as follows.

Theorem 3.1.8. (Absolute Bound) For a SRG with parameter set (v, k, λ, µ) G we have

v ≤ 1
2f(f + 3) and v ≤ 1

2g(g + 3) .

Example 3.1.4. It can be verified that the parameter set (50, 21, 4, 12) satisfies all the presented
necessary conditions. However since −9 would have to be an eigenvalue with multiplicity 7 it
would imply 50 ≤ 1

27(7 + 3) = 35 and thus contradicting the absolute bound.

3.2 Moore graphs and convexity in graph theory

We say that a Moore graph is a graph of diameter d and girth 2d + 1. Their name was attributed
by Hoffman and Singleton in honor of E.F. Moore who first raised the problem of classifying such
graphs. Soon it was established [69] that every such graph must in fact be regular and hence has
precisely

M(d, k) = 1 + k
d−1∑
i=0

(k − 1)i,
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Figure 3.2: A Moore graph on 50 vertices - the Hoffman-Singleton graph.

vertices where k is its valency. In fact another way to classify Moore graphs is to define them as
k-regular graphs with diameter d having preciselyM(d, k) vertices.

If d ≥ 3 then Bannai, Ito [14] and (independently) Damerell [27] established that there is no
Moore graph with the exception of the cycle of length 2d+1. Hence, every otherMoore graphmust
have diameter 2 and thus share its membership with the Petersen graph and the 5-cycle. Hoffman
and Singletton found an additional Moore graph on 50 vertices depicted on Figure 3.2, and also
established that the list of possible valencies for such a graph is finite. Part of their result is easily
established by the theory developed in Section 3.1.

Proposition 3.2.1. If G is a Moore graph with diameter 2 and valency k, then k ∈ {2, 3, 7, 57}.

Proof. Notice that G is necessarily strongly regular. Indeed if x, y are two adjacent vertices then
since the graph is triangle-free they share no common vertex. If x 6∼ y then since the graph has
diameter 2 we must have |N(x) ∩ N(y)| ≥ 1 but the fact that such Moore graph are C4-free
implies that |N(x) ∩ N(y)| = 1. Hence every k-regular Moore graph is in fact a SRG with
parameter set (1 + k2, k, 0, 1). From Lemma 3.1.3 we have that the non-trivial eigenvalues of G
have multiplicities

1
2(k2 ± 2k − k2√

1 + 4(k − 1)
) . (3.4)

Clearly k = 2 implies integrality of (3.4) and in particular, this is the only possibility where the
expression

√
1 + 4(k − 1) is allowed to be irrational. Otherwise k = (p2 + 3)/4 for some integer

p. Simplifying (3.4) with this in mind we obtain

(15 + 2p2 − p4)
16p . (3.5)
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must be an integer. Now integrality of (3.5) implies that p|15 and hence p ∈ {1, 3, 5, 15} so that
in this case k ∈ {1, 3, 7, 57}. Since k = 1 forces G to be the complete graph it follows that
k ∈ {2, 3, 7, 57} and the proof is complete.

It is not hard to see that for k = 2, 3 the only Moore graphs are the 5-cycle and the Petersen
graph. For k = 7 Hoffman and Singleton provided a construction of the unique such graph with
50 vertices and valency 7.

Notice that from the proof of Proposition 3.2.1 every Moore graph of valency k is a strongly
regular graph with parameter set (1+(k−1)+(k−1)2, k, 0, 1). From the above summary we can
infer that the only uncovered case is the existence of a (3250, 57, 0, 1) SRG. The existence of such
a graph is unknown and is, according to [35], the most famous open problem in algebraic graph
theory [35].

Problem 3. Is there a (3250, 57, 0, 1) strongly regular graph?

While it is not even known whether such a graph would in fact be unique, there are some
structural results about its automorphism group. As it can easily be seen the 5-cycle, the Petersen
graph as well as the Hoffman-Singleton graph are all vertex transitive. Somehow surprisingly it
was first proved by Higman that a SRGwith parameter set (3250, 57, 0, 1), if it eexists, is not vertex
transitive. In fact, Mačaj and Šíran proved [55] that its automorphism group has order at most 375.

Before presenting the connection between Moore graphs and convex cycles let us mention an-
other problem related to Problem 3. The 5-cycle, Petersen graph, Clebsch graph and the Hoffman
Singleton graph are all triangle-free and so is a potential Moore graph on 3250 vertices. In addi-
tion, there are three more known triangle-free strongly regular graphs namely the Gewritz graph
(56, 10, 0, 2), the Higman-Sims graph (100, 22, 0, 6) and a SRG with parameter set (77, 16, 0, 4).
Despite much effort it is not known whether there exist any additional triangle-free SRG. Hence
we record the following problem.

Problem 4. Is there an eighth triangle-free SRG?

The smallest open parameter for a triangle-free SRG is (162, 21, 0, 3).
In our next section we show yet another characterization of Moore graphs in terms of their

number of cycles of odd girth. We will show that Moore graphs and odd cycles are the only graphs
with girth g = 2d+ 1 having n · (m− n+ 1)/g cycles of length g where n,m are their respective
order and size. We present the result in a more general setting involving the notion of convex cycles.

3.3 Convex cycles

Let H be a subgraph of G.We say that H is convex (as a subgraph of G) if for any u, v ∈ V (H),
every shortest u, v-path in G lies completely in H . In particular, if H is convex in G, then
dH(u, v) = dG(u, v) holds for every u, v ∈ V (H). Convex subgraphs and in particular convex cy-
cles are often employed to unveil additional structure of the studied graphs especially in the field of
(Cartesian) graph products. Extending a result of Vanden Cruyce [72] for hypercubes, Egawa [32]
characterized Cartesian products of complete graphs by convex subgraphs while Chepoi [24] char-
acterized isometric subgraphs of Cartesian products of complete graphs via convexity of certain
subgraphs. In [13] weak Cartesian products of trees are characterized among median graphs by
the property that K2,3 without an edge is not a convex subgraph. As a final instance of convexity
in relation to product graphs let us mention that the classical unique prime factorization theorem
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with respect to the Cartesian product, admits a short proof if one makes use of convexity. See [41]
for details.

Among convex subgraphs, convex cycles are frequently studied. In [63] Polat proved that a
netlike partial cube is prism-retractable if and only if it contains at most one convex cycle of length
greater than 4 while in [64] he showed that any netlike partial cube that is without an isometric
ray contains a convex cycle or a finite hypercube which is fixed by every automorphism. Parallel
to the above mentioned Polat’s result it was proved in [49] that a partial cube is almost-median if
and only if it contains no convex cycle of length greater than 4. Very recently the convex excess of
a graph was introduced as the sum of contributions of all of its convex cycles and used to obtain
an inequality involving the order, the size, the isometric dimension, and the convex excess of an
arbitrary partial cube [50].

In the next section we consider convex cycles from an extremal point of view: what is the
largest number of convex cycles that a given graph can have? We became interested in this question
because of the recent paper [44] by Hellmuth, Leydold, and Stadler in which convex cycle bases
are studied. Along the way they also proved that a graph G of order n and sizem contains at most
nm convex cycles. In the next section we strengthen their result in an extremal sense.

The remaining part of this section is organized as follows. First we bound the number of odd
convex cycles of a given graph and prove that precisely the Moore graphs are extremal graphs.
Following this we establish a corresponding upper bound for even convex cycles and finally derive
a combined inequality.

In what follows G will denote a simple graph on n vertices, m edges, and of girth g ≥ 3.
The following characterization of convex cycles is a modification of a related result proved in [44].
More precisely, the first part (for odd cycles) is the same, while the second part is modified to serve
our purposes.

Lemma 3.3.1. Let C be a cycle of G. If |C| = 2k + 1, k ≥ 1, then C is convex if and only if for
every edge e = xy of C there exists a vertex v ∈ C such that

(i) dG(x, v) = dG(y, v) = k, and

(ii) the x, v-path (resp. y, v-path) on C of length k is a unique shortest x, v-path (resp. y, v-path)
in G.

If |C| = 2k, k ≥ 2, then C is convex if and only if for every vertex u ∈ C there exists a vertex
v ∈ C such that

(iii) dG(u, v) = k,

(iv) there are precisely two u, v-paths in G of length k.

Proof. As mentioned above, we only need to prove the even case. Hence let |C| = 2k, k ≥ 2. It is
clear that the two conditions are necessary. Suppose now that for every vertex u ∈ C there exists
a vertex v ∈ C such that (iii) and (iv) hold. By way of contradiction assume that there are vertices
x, y ∈ C such that there is a shortest x, y-path P that is not completely contained in C. Let x′ be
the vertex on C with dG(x, x′) = k. By (iv) there are precisely two x, x′-paths in G of length k
and they are both contained in C. Then y belongs to one of these paths, denote it with Q. If P is
shorter than the length of the x, y-subpath of Q, then dG(x, x′) < k, a contradiction. And if P is
of the same length as the x, y-subpath ofQ, then we would have at least three x, x′-paths of length
k, which contradicts (iv) for x and x′.
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Note that if follows from the first part of Lemma 3.3.1 that in a graph of girth g = 2r + 1
all of its g-cycles are convex. We will call a pair (e, v) ∈ E(G) × V (G) that satisfies conditions
(i) and (ii) of Lemma 3.3.1 an odd antipodal pair. Likewise if (u, v) ∈ V (G) × V (G) satisfies
conditions (iii) and (iv) then we will say that (u, v) is an even antipodal pair. In cases where the
context is clear we will simply say that a pair (a, b) is antipodal if it is an even or odd antipodal
pair. Observe that Lemma 3.3.1 readily implies that the number of odd convex cycles is O(nm)
while the number of even convex cycles is O(n2). In what follows we give sharper estimates for
these two quantities by bounding the number of antipodal pairs.

Lemma 3.3.2. Let v ∈ V (G) there exist at most m − n + 1 edges e such that (e, v) is an odd
antipodal pair.

Proof. Let T be a BFS tree of G with root v and let e ∈ E(T ), as one endpoint of e is closer to v
than the other, (e, v) is not antipodal.

From Lemma 3.3.2 we get an estimate on the number of odd convex cycles in G, which we
denote by ρo(G).

Lemma 3.3.3. LetG be a graph with n vertices,m edges, and girth g. Then the number of its odd
convex cycles ρo(G) satisfies

ρo(G) ≤ n

g
(m− n+ 1) . (3.6)

Proof. Suppose that G contains k odd convex cycles. Every convex cycle C determines precisely
|C| ≥ g antipodal pairs. We select one and assign it toC. Doing it for every convex cycle, there are
at least k(g−1) antipodal pairs that are not assigned to convex cycles. In addition, by Lemma 3.3.2,
a vertex of G does not form an antipodal pair with at least n− 1 edges. Therefore we have at least
n(n− 1) non-antipodal pairs. If follows that

k ≤ nm− k(g − 1)− n(n− 1) ,

and thus
k ≤ n

g
(m− n+ 1) ,

as claimed.

If G is a cycle, then m = n = g, thus the bound of Lemma 3.3.3 is sharp for all odd cycles.
The same holds for complete graphsKn, n ≥ 3. Indeed, forKn we have g = 3,m =

(n
2
)
, and any

triple of vertices induces a triangle, hence the assertion follows because n
3
((n

2
)
− n+ 1

)
=
(n

3
)
.

We next show that equality (3.6) holds precisely for Moore graphs. Before stating the claim let
us recall that by Proposition 3.1.3 the characteristic polynomial of the Hoffman-Singleton graph is
(x − 7)(x + 3)21(x − 2)28 while a Moore graph with parameter set (3250, 57, 0, 1), provided it
exists, has characteristic polynomial equal to (x− 57)(x+ 8)1520(x− 7)1729.

Lemma 3.3.4. ρo(G) = n
g (m− n+ 1) if and only if G is a Moore graph.

Proof. Suppose first thatG is a graph that satisfies the equality. Then it follows from Lemma 3.3.3
and its proof that the girth g of G is odd and that all convex cycles of G are of length g = 2r + 1.
Recall from Lemma 3.3.2 that a vertex v ∈ V (G) lies in at mostm− n+ 1 antipodal pairs. Since
the equality is satisfied for G, it follows that every edge which is not on a BFS tree with a root v

28



constitutes an antipodal pair with v. In other words every such edge joins two vertices x, y such
that dG(v, x) = dG(v, y) = r. Consider now a BFS tree T rooted at v and let v′ be a leaf of T .
Observe that v′ has degree at least two in G because ρo(G) = ρo(G − u) holds for any pendant
vertex u. Hence there is an edge e not in T that is adjacent to v′ in G. From the above remark it
follows that (e, v) is an antipodal pair and therefore dG(v, v′) = r. This in turn implies that G has
diameter r. Since the girth of G is 2r + 1 we conclude that G is a Moore graph.

To prove the converse we need to show that every Moore graph satisfies equality (3.6). As
already observed, this is the case with odd cycles and complete graphs of order n ≥ 3. The Petersen
graph has girth 5, hence all of its twelve 5-cycles are convex. Since 10

5 (15 − 10 + 1) = 12, the
bound for the Petersen graph is established. It thus remains to show that the Hoffman-Singleton
graphH and a possibleMoore graphX of diameter 2 and degree 57 also have the claimed property.
To show this we simply invoke Corollary 1.2.4. The Hoffman-Singleton graph H has 50 vertices,
175 edges, and pH(x) = (x− 7)(x− 2)28(x+ 3)21. Since it has girth 5 and(

d45

dx45 pH(x)
)

(0)
45! = −2520 ,

it follows that the number of 5-cycles ofH is 1260. Hence the bound of Lemma 3.3.4 is sharp forH .
Similarly for a possibleMoore graphX we have that pX(x) = (x−57)(x+8)1520(x−7)1729. Since
the coefficient of x3245 in the polynomial pX(x) is −116188800 it follows that X has 58094400
5-cycles. Given the fact that X has degree 57 and order 3250, it is now straightforward to verify
that X also satisfies the equality.

3.3.1 Even convex cycles

We next derive an upper bound for the number of even convex cycles, denoted with ρe(G). The
bound is similar to the above bound for ρo(G).

It follows from the second part of Lemma 3.3.1 that if (v, v′) is an even antipodal pair then
dG(v, v′) ≥ 2. Combining this with the fact that every even convex cycle C yields |C|/2 antipodal
pairs, gives the bound

ρe(G) ≤ n(n− 1)− 2m
g

.

While this bound is of the right order, it is not very sharp for sparse graphs. The next result
establishes a better bound for graphs with a small cyclomatic number, that is, with a smallm−n+1.

Lemma 3.3.5. Let G be a graph with n vertices, m edges and girth g. The number of its even
convex cycles ρe(G) satisfies

ρe(G) ≤ n

g
(m− n+ 1) . (3.7)

Moreover, equality holds if and only if G is an even cycle.

Proof. We claim that every vertex v ∈ V (G) lies in at mostm− n + 1 even antipodal pairs. Let
(v, v′) be an antipodal pair of vertices from an even convex cycle C. Let T be a BFS tree rooted
at v. Lemma 3.3.1 implies that all the edges of C are on T with the exception of one edge e that is
incident with v′ on C. So for every vertex v′ that is antipodal with v there is at least one edge e not
on T that is adjacent to v′. This proves the claim. In total we therefore have at most n(m− n+ 1)
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even antipodal pairs. In addition, every even convex cycle of length 2k yields k antipodal pairs.
Since we only need to count unordered pairs, we deduce that

ρe(G) ≤ n

g
(m− n+ 1) .

For the equality part of the lemma, let C be an even convex cycle of G. If G = C then
equality clearly holds. Otherwise, let u be a vertex ofG that is not on C and is adjacent to a vertex
v ∈ C. Let v′ be the antipodal vertex of v on C. Then observe that (u, v′) is not an antipodal
pair. Moreover, at least one edge that is incident with v′ on C is not on a BFS tree rooted at u. We
deduce that u is contained in less than m − n + 1 even antipodal pairs which implies that G has
less than n

g (m− n+ 1) even convex cycles.

3.3.2 A combined inequality

We finally combine the derived bounds for ρo(G) and ρe(G) into a single inequality for the number
ρ(G) of all convex cycles ofG. The key insight is that graphs with the maximum number of convex
cycles are homogeneous in the sense that they either contain only even or only odd convex cycles.
The following lemma establishes this fact.

Lemma 3.3.6. ρ(G) ≤ n
g (m − n + 1). Moreover, if G contains an even convex cycle then the

bound is attained if and only if G = Cn.

Proof. Suppose that C is an even convex cycle of G. Let v ∈ C and consider a BFS tree T rooted
at v. Let v′ be the antipodal vertex of v with respect to C. Let e and f be the edges of C incident
with v′. Then none of e, f forms an antipodal pair with v as the end-vertices of e (or f ) are not
at the same distance to v. This means that for every even convex cycle there is at least one less
possible odd convex cycle which in turn implies that

ρ(G) ≤ n

g
(m− n+ 1) .

Suppose now that G contains an even convex cycle C and that G 6= Cn. Let u 6∈ C be a vertex
of G that is adjacent to a vertex v ∈ C. Let v′ be the antipodal vertex of v on C and consider a
shortest u, v′-path Puv′ . We distinguish two cases and wish to show that the given configuration
forbids the attainment of the bound.

Case 1. Puv′ ∩ C 6= ∅.

In this case (u, v′) is not an antipodal pair of an even convex cycle. Moreover at least one edge
incident with v′ on C is not in a BFS tree rooted at u and also does not form an antipodal pair with
u. The latter fact implies that ρ(G) < n

g (m− n+ 1).

Case 2. Puv′ ∩ C = ∅.

In this case the degree of v′ is at least 3 and, becauseC is convex, |Puv′ | = dG(v, v′). It follows
that a BFS tree T rooted at u does not contain the edges e and f that are on C incident with v.
Moreover, none of these two edges forms an antipodal pair with u. Since (u, v′) is an antipodal
pair of at most one even convex cycle, u is contained in strictly less thanm−n+1 antipodal pairs.
Therefore the inequality for ρ(G) is again not attained.
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By combining Lemma 3.3.6 with the results of the previous subsections we are now in the
position to state the main theorem of this section.

Theorem 3.3.7. Let G be a simple graph of order n, sizem, and girth g ≥ 3. Then G contains at
most

n

g
(m− n+ 1) ,

convex cycles. Moreover, equality holds if and only if G is an even cycle or a Moore graph.

3.4 Distance matrices and short embeddings

In 1971 Graham and Polak [38] studied a problem related to a switching task performed at Bell
Systems in the context of telephone networks. The underlying problem was modeled as follows.
Consider two strings x = x1 · · ·xk and y = y1 · · · yk from {0, 1, ?}k and define

h(x, y) =| {(xi, yi)|1 ≤ i ≤ k ∧ {xi, yi} = {0, 1}} | .

That is h(x, y) counts the number of positions such that the corresponding coordinates of x and y
are 0 and 1. Given a graph G we say that `k : V (G)→ {0, 1, ?}k is a distance labeling if for any
u, v ∈ V (G) we have

d(u, v) = h(`k(u), `k(v)) .

Observe that for large enough k such a labeling always exists and we denote by N(G) the least
number k such that there exist a distance labeling `k of G.

Example 3.4.1. If Qn is the n-cube then N(Qn) = n.

Example 3.4.2. For a tree T we can construct a distance labeling that does not use the star symbol
as follows. Inductively, let `′ be a distance labeling of T ′ = T − v where v is a leaf of T . Let
`(u) = 0`′(u) for all u 6= v and `(v) = 1`′(v). Clearly, ` is a distance labeling of T and hence
N(T ) ≤ |V (T )| − 1 since for the tree on 2 vertices we can obtain a distance labeling with length
1.

Given the examples above it may be compelling to conjecture that N(G) ≤ |V (G)| − 1. This
is indeed the case and the proof of this fact earned by Peter Winker 100$ as promised by Graham,
who conjectured this statement.

While Graham and Polak were not able to prove this inequality they still established certain
results related to N(G), most notably an upper bound related with the number of negative and
positive eigenvalues of DG. More precisely, the following claim was established.

Theorem 3.4.1. Let G be a graph and n−(G), n+(G) the number of negative and positive eigen-
values of DG. Then

N(G) ≥ max{n−(G), n+(G)} . (3.8)

In the same paper they have established that the determinant of the distance matrix of a tree
depends only on its number of vertices. Since then many new proofs of this fact arose and at this
point we present a particularly elegant proof due to Yan and Yeh [76]. The proof relies on the so
calledDodgson’s determinant evaluation rule. For an×nmatrixM and subsetsC,R ⊂ {1, . . . , n}
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letMC
R be the matrix obtained fromM by removing the columns indexed by C and rows indexed

by R. Dogdson determinant rule then states that the following equality holds

det(M) det(M1,n
1,n ) = det(M1

1 ) det(Mn
n )− det(Mn

1 ) det(M1
n), (3.9)

where we removed set notations in order to simplify the expression. One can find a half-page
combinatorial proof of (3.9) due to Zeilberger [77]. Given this identity we are able to prove our
next claim.

Theorem 3.4.2. If T is a tree on n vertices then

det(D(T )) = −(n− 1)(−2)n−2 .

Proof. If n = 1, 2, 3 then the claim clearly holds. Let us therefore assume that the claim is true for
every tree of order k < n and let T be a tree of order n. LetD be the distance matrix of T and let
two leaves of T be indexed by the columns v1, vn in D. By the induction hypothesis we have

det(D1,n
1,n) = −(n− 3)(−2)n−4 and det(D1

1) = det(Dn
n) = −(n− 2)(−2)n−3 .

Hence by using (3.9) we have

det(D) · (−(n− 3)(−2)n−4) = (−(n− 2)(−2)n−3)2 − det(Dn
1 )2 . (3.10)

In order to compute Dn
1 we need an additional equation. We note that if v1 is a column of the

leaf and its neighbor respectively, then v1 − v′1 = (−1, 1, . . . , 1). Hence we have that (v1 − v′1 +
v′n − vn) = (−2, 0, . . . , 0, 2) and thus using the Laplace expansion on the matrix obtained by
performing the described elementary column operations we infer

det(D) = 2(n− 2)(−2)n−3 + 2(−1)n+1 det(Dn
1 ) . (3.11)

Now by solving the quadratic equation produced by (3.10) and (3.11) we infer that

det(Dn
1 ) = 2n−2

and hence that
det(D) = −(n− 1)(−2)n−2

as claimed.

Inspecting small graphs one can see that n−(G) > n+(G) which, if true, would further sim-
plify bound (3.8). In fact in a subsequent paper [37] Graham and Lovász remarked that it is not
known if in fact a graph satisfying n−(G) ≤ n+(G) actually exist. In our next section we show
their existence. Given their nature we will call them optimistic graphs.

3.4.1 Eigenvalues of the distance matrix of strongly regular graphs

It can be verified by a straightforward Sage program that there is no optimistic graph on up to 11
vertices. However, we show that there is such a graph on 13 vertices. In particular, we have

Theorem 3.4.3. Every conference graph of order v > 9 is optimistic.
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Proof. Let G be a strongly regular graph with parameter set (v, k, λ, µ) and distance matrix D.
Let u, v be two distinct vertices of G. By definition, the number of 2-walks between u and v is λ
if u and v are adjacent and µ otherwise. If A denotes the adjacency matrix of G then, since G has
diameter 2, its distance matrix is

D = A+ 2
µ
· (A2 − kI − λA) = 2

µ
A2 + (1− 2λ

µ
)A− 2k

µ
I. (3.12)

For a conference graph this simplifies further to

D = 1
v − 1(8A2 + (9− v)A)− 4I .

Since this is a polynomial in A we obtain the eigenvalues of D by plugging the eigenvalues of a
SRG in the above equation. We thus infer that if G is a conference graph its eigenvalues are

3
2(v − 1), −3−

√
v

2 ,
−3 +

√
v

2 ,

and since for v > 9 precisely v+1
2 of the eigenvalues are positive we deduce our claim.

Before commenting the result we state the relation derived in the above proof that can be used
to compute the eigenvalues of the distance matrix of a strongly regular graph.

Proposition 3.4.4. Let G be a strongly regular graph with parameter set (v, k, λ, µ), Then ν is an
eigenvalue of AG if and only if 2

µν
2 + (1− 2λ

µ )ν − 2k
µ is an eigenvalue of DG.

As mentioned in the introductory examples, Paley graphs are representatives of conference
graphs. We can find additional optimistic graphs by extending our search from here in virtually
every direction. For example there are many other optimistic strongly regular graphs, one of them
being the Hall-Janko graphHwith parameters (100, 36, 14, 12). It can be verified using (3.12) that
n+(H) = n−(H) + 28.

There are additional self-complementary optimistic graphs as well. A non-regular example
is shown on Figure 3.3. It can be checked that (excluding Paley graphs) there are precisely 6
additional optimistic self-complementary graphs on up to 17 vertices, all of them satisfying the
relation n+(G) = n−(G) + 1 and having diameter 2. However there are examples of optimistic
graphs of higher diameter as well. The smallest vertex-transitive optimistic graphs having diameter
3 and 4 respectively, are depicted on Figure 3.4. Their graph6 representation being

UsaCC@u]QwLODoIo@wBI?So?{??@~??lw?h{?Bv?

and

YsP@?__C?A?O@@AA?GOCA?C??_G?g?@O?G??@?????o_?Cc???S???g_.

In all our examples the gap between the number of positive and negative eigenvalues of the
distance matrix is rather small. For example the gap for Paley graphs is 1. However, it is not hard
to find graphs such that the gap between n+(G) and n−(G) is arbitrarily large. During the author’s
work on this problem one of the referees asked whether one can construct graphs of order n such
that

n+(G)− n−(G) ≥ c logn

for some constant c > 0. As it turns out one can obtain an even larger gap of order Θ(n).
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Figure 3.3: An optimistic self-complementary graph with graph6 string representation
P?BMP{}kmh[X\\SjCrHisfYJ[

Figure 3.4: Smallest vertex-transitive optimistic graphs of diameter 3 and 4 respectively.
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It is well known that there exists a strongly regular graph with parameters (m2, 3(m−1),m, 6)
for everym > 2. From Proposition 3.4.4 we can deduce that the eigenvalues of its distance matrix
are 1, 1 −m,m(2m − 3) + 1 with respective multiplicities m2 − 3m + 2, 3m − 3, 1. Hence for
every such graph G we have

n+(G)− n−(G) = m2 − 6m+ 6 .

As remarked at the beginning of the section a computer search indicated that there is no opti-
mistic graph on at most 11 vertices. Since there are too many graphs of order 12 to be inspected
we leave the following for further research.

Problem 5. Is there an optimistic graph of order 12? If not, is the Paley graph of order 13 the
unique optimistic graph on 13 vertices?

Our construction of an infinite sequence of optimistic graphs relied on the fact that it is very
easy to compute the distance matrix of a graph of diameter 2. While we exhibited some concrete
examples of higher diameter, it would be interesting to see a family of optimistic graphs with
increasing diameter.

Problem 6. Construct a family of optimistic graphs with arbitrarily large diameter.
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Chapter 4

Infeasibility of the parameter set
(75, 32, 10, 16)

In this chapter we show how to rule out the existence of a strongly regular graph with parameter set
(75, 32, 10, 16). This was of particular importance since the graph is linked to certain construction
of 2-graphs as well as partial ordered geometries [36].

In order to establish this result we will need to make use of a the so called star-complement
technique introduced by Cvetković and Rowlinson [26]. The star-complement technique turned
out to be a useful tool for re-proving classification results for some SRGs [60, 70] although its
direct application fails for SRGs with a large number of vertices or large valency. The two main
drawbacks being the large search space for induced subgraphs and the problem of computing the
clique number of some large graphs. In this chapter we will present methods to overcome both
drawbacks.

This chapter is organized as follows. In our next section we first give an overview of the star
complement technique. Specifically we present the part of the theory that is suitable for our result.
We then show a structural result about a SRG with parameter set (75, 32, 10, 16). More precisely
we show that its clique number must be 5 and that every 4-clique is contained in a 5-clique. Es-
tablishing this claim is a long and technical result. The main idea is to construct small induced
subgraphs of a SRG with parameter set (75, 32, 10, 16) and using the theory of star complements.
We continue by showing that the parameter set (75, 32, 10, 16) is not feasible by applying the fact
that its clique number is 5 and using the implications that this claim brings along. We conclude
the chapter by discussing some of the computational aspects of our approach. In addition we show
how to take symmetries into account when solving the maximal clique problem.

4.1 Star complements

The idea behind star-complements revolves around the notion of a so called star-complement graph.
Let G be a simple graph of order n, AG its adjacency matrix and r one of its eigenvalues with
multiplicity f . We will say that r is an eigenvalue of G whenever we mean that r is an eigenvalue
of AG.

An induced subgraphH ⊆ G is called a star-complement forG and eigenvalue r if it has order
n − f and r is not an eigenvalue of H . As it turns out [26], there is a star-complement for every
eigenvalue of G. For convenience we record this fact in the following proposition.
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Proposition 4.1.1. If G is a graph and r an eigenvalue of G, then G has a star complement for r.

Before explaining the role of star-complements, let us mention that one can construct a star-
complement for an eigenvalue r by extending an induced subgraph of G that does not contain r as
an eigenvalue [60, Lemma 3]. More precisely:

Proposition 4.1.2. Let G be a graph with eigenvalue r. If H ′ is an induced subgraph of G that
does not contain r as an eigenvalue then there exist a star complement H for G and eigenvalue r
so that H ′ is an induced subgraph of H .

The main motivation of star-complements is that they in some way allow us to reconstruct G.
The reader can find the precise implications in [26, pp. 150], in this chapter we shall formulate the
theory to suit the needs of our application.

Let H be a star-complement for G with eigenvalue r and define the product

〈u, v〉 = u(rI −AH)−1vt .

The comparability graph of H and r denoted by Comp(H, r) is the graph with vertex set

V (Comp(H, r)) = {u ∈ {0, 1}n−f | 〈u, u〉 = r and 〈u,−→1 〉 = −1} ,

and adjacency defined as

u ∼ v ⇐⇒ 〈u, v〉 ∈ {−1, 0} .

Let us remark that the condition that the inner product of a vertex of Comp(H, r) and the all-ones
vector is −1 does not hold in general but only if we assume that G is a regular graph, see [67].

As it turns out, the problem of constructing G is reduced to the problem of finding cliques in
Comp(H, r). Specifically

Proposition 4.1.3. If r is an eigenvalue of G with multiplicity f , H a star complement for G and
r, then Comp(H, r) has a f -clique.

This already sets the general idea behind the application of the star complement technique.
Suppose G is a SRG with parameter set (v, k, λ, µ) and r an eigenvalue of G with (large) multi-
plicity f . Suppose that we know that H ′ is a induced subgraph of G and does not have r as an
eigenvalue. IfH ′ is large enough we can compute its comparability graph and check for f -cliques.
If the obtained graph does not have such a clique then G does not exist.

In most cases we cannot directly find an induced subgraphH ′ large enough to be a star comple-
ment. In that case, by Proposition 4.1.2, we can extendH ′ in all possible ways to obtain candidates
for a star-complement of G and r. Depending on how large H ′ is, we may obtain a large set of
candidates, and for each such candidate H we need to compute the respective clique number of
Comp(H, r).

The set of all possible candidates for star-complements gets large very quickly and hence we
need an efficient pruning method. As it turns out the partitioned interlacing principle introduced
in Section 1.2.1 provides this condition.
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4.1.1 Proof outline

The problem of determining whether a (v, k, λ, µ) SRG graph G exists is thus reduced to the fol-
lowing. Pick an eigenvalue r of G with large multiplicity. Start with a large induced subgraph
H ′ that does not have r as an eigenvalue and must appear as an induced subgraph of G. Extend
H ′ to a star-complement of G and r using the described pruning conditions to get rid of invalid
graphs. Finally, for all potential star-complements H compute the clique number of Comp(H, r).
In practice, Comp(H, r) can be a very large and dense graph and we explain how to compute its
clique number in Section 4.4.

Now, let us describe our approach for the classification of SRGwith parameter set (75, 32, 10, 16).
For the eigenvalue we take r = 2 and look to find a small list L with graphs of large order such
that at least one member of L is an induced subgraph of a (75, 32, 10, 16) SRG X75. When the
list is obtained, we proceed to show that no graph in L is an induced subgraph of X75 as follows.
For H ∈ L let sc(H) be a largest induced subgraph of H that does not have 2 as an eigenvalue
and has order at most 19. Note that sc(H) may not be unique and in this case we can pick an
arbitrary such subgraph. If |V (sc(H))| = 19 then sc(H) is a star complement forX75 and we use
the theory described above to verify that ω(Comp(sc(H), 2)) < 56, and hence that H is not an
induced subgraph of X75. If |V (sc(H))| < 19 then we extend sc(H) by adding 19− |V (sc(H))|
vertices in all possible ways as to obtain (by Proposition 4.1.2) a list of possible star complements
for X75. Again, we show that none of the obtained star complements has a comparability graph
with a large enough clique. The process of extending an induced subgraph H to a graph of order
19 is done by inductively introducing new vertices in all possible ways, and in the end removing
all candidates that have 2 as eigenvalue or do not interlace. In order to minimize the list of candi-
date graphs we also make use of the following observation. Suppose that there is a pair of vertices
u, v ∈ V (H) that does not yet have many common neighbors in the induced subgraph - that is
u ∼ v and |N(u) ∩ N(v)| < λ = 10, or u 6∼ v and |N(u) ∩ N(v)| < µ = 16. Suppose fur-
ther that for every S ⊂ V (H) \ {u, v} all the graphs obtained by adding a new vertex adjacent to
S ∪ {u, v} that interlace X75 also do not contain 2 as an eigenvalue. Let us say that such a pair of
vertices is called graceful.

In virtue of Proposition 4.1.2 we can simply use these graphs when building a complete list of
star complements of X75 having H as subgraph. Stating it as a proposition

Proposition 4.1.4. If u, v is a graceful pair for H and L a list of all graphs obtained by adding
a new vertex x to H that is joined to u, v and a subset of V (H) \ {u, v}. Then there exist a star
complement G for X75 such that at least one of the members of L is an induced subgraph of G.

The described approach is performed by a tailor made C program extend.c that we describe
later. In particular, it turns out that the above procedure is computationally feasible if the list L of
induced subgraphs does not include graphs that are, when reduced to a subgraphwithout eigenvalue
2, of order less than 17. In practice, this is almost the same as demanding that for each G ∈ L we
have n(G)− k2(G) ≥ 17, where n(G) is order of G and k2(G) is the multiplicity of eigenvalue 2
in G.

4.2 Cliques in a SRG with parameter set (75, 32, 10, 16)
In what follows let X75 denote a possible strongly regular graph with parameters (75, 32, 10, 16).
Our main goal is to prove that X75 does not exits. In order to do so we first establish a struc-
tural claim related to its cliques. Notice that Hoffman bound [35, pp. 204] implies that X75 has
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independence number at most 5 and hence that X75 has clique number at most 5. On the other
hand, Bondarenko, Prymak, and Radchenko developed a general tool for bounding the number of
4-cliques in a strongly regular graph [19]. In particular, they have established that a SRG with
parameters (75, 32, 10, 16) has at least 783 4-cliques.

In this section we show that in fact X75 has clique number 5, more precisely, we show the
following result.

Proposition 4.2.1. If X75 exists, its clique number is 5. Moreover, every 4-clique of X75 is con-
tained in a 5-clique.

In order to prove the result we need to recall a very useful lemma whose proof the reader may
find in [19]. Let H be an induced subgraph of order m of a (v, k, λ, µ) strongly regular graph G,
and let (d0, d1, . . . , dm−1) be a vector such that di denotes the number of vertices of H having
degree i. Similarly let (b0, . . . , bm) be a vector where bi denotes the number of vertices of G−H
that have i neighbors in H . The next lemma gives a relationship between these numbers.

Lemma 4.2.2. With notation as above, the following three equations hold

m∑
i=0

bi = v −m,

m∑
i=0

ibi = mk −
m−1∑
i=0

jdj ,

m∑
i=0

(
i

2

)
bi =

(
m

2

)
µ−

m−1∑
i=0

(
i

2

)
di + 1

2(λ− µ)
m−1∑
i=0

idi .

(4.1)

Suppose now that X75 has a 4-clique H that is not contained in a 5-clique. Applying the
above Lemma it can easily be verified that there are 4 solutions (b0, b1, b2, b3) (notice that by our
assumption b4 = 0) to the above system, namely

(3, 20, 48, 0), (0, 29, 39, 3), (1, 26, 42, 2) and (2, 23, 45, 1). (4.2)

In what follows we analyze all these possibilities, showing that none of these solutions occurs
as a configuration in X75. We split the proof into four sections each dealing with a different value
of (b0, b1, b2, b3). The general idea is to use the structure given by a specific configuration to find
a small list of graphs that must be an induced subgraph of X75. For each possible case we have
written simple Sage [28] programs that build graphs with the established structure and prune them
using the interlacing principle we described. Whenever we assert that some induced structure is
not possible or say that there is a list of graphs satisfying it, there is a corresponding Sage program
that computed this part of the claim. Each such program (with the respective output) is recorded
in Table 4.1. Throughout the rest of the chapter H will denote a 4-clique of X75.

In the next section we shall analyze the case when X75 has clique number 5. Since we will
also need a glimpse into this case already in this section, let us remark at this point that if K5 is
a 5-clique of X75 then every vertex in V (X75)− V (K5) has precisely two neighbors in K5. One
way to see this claim is to use the above system of equities which only gives (0, 0, 70, 0, 0, 0) as a
solution vector. Finally, let us remark that throughout the chapter we will use the notation X75[S]
to denote the subgraph of X75 induced by the set of vertices S ⊆ V (X75).
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4.2.1 Case (3, 20, 48, 0)

Let us denote with X0, X1, X2 the subsets of vertices in V (X75) \ V (H) that have, respectively,
0,1, and 2 neighbors in H . Moreover, denote the vertices in X0 by x1, x2, x3.

Lemma 4.2.3. Every vertex in X2 has precisely two neighbors in X0.

Proof. Let xi ∈ X0. We use an argument that will be repeatedly used in this chapter. Since xi is
not adjacent to any of the vertices inH it has to have 16 common neighbors (sinceX75 is strongly
regular with µ = 16) with each of its vertices. Thus there are 4 · 16 paths of length 2 from xi toH .
On the other hand, xi has 32 neighbors (X75 is 32-regular) in X0 ∪ X1 ∪ X2. All the neighbors
are in fact inX2, for otherwise they could not form 64 2-paths toH . Since |N(xi)∩N(xj)| = 16
and |N(xi)| = 32, we have

48 ≥ |N(x1) ∪N(x2) ∪N(x3)| = 3 · 32− 3 · 16 + |N(x1) ∩N(x2) ∩N(x3)|,

by the inclusion-exclusion principle. Thus N(x1) ∩N(x2) ∩N(x3) = ∅. Therefore every vertex
in X2 is adjacent to precisely two vertices in X0.

For i ∈ {1, 2, 3} let Xi,j
2 ⊆ X2 be the graphs induced by N(xi) ∩N(xj).

Lemma 4.2.4. The graphsX1,2, X1,3, X2,3 have order 16 and are isomorphic to the disjoint union
of cycles.

Proof. It is clear that the sets have order 16. Let v ∈ X1,2. We count the number of 2-paths from
v to H . Since v is adjacent to 2 vertices of H , there must be 2 · 10 + 2 · 16 such paths. Denote
with k the number of neighbors of v in X2. By the previous lemma, v is adjacent to 2 vertices in
X0, thus it is adjacent to 32− 2− 2− k vertices in X1. By counting 2-paths we thus have:

2 · 10 + 2 · 16 = 2k + 1(28− k) + 0 · 2 + 2 · 3 .

Therefore, v has 18 neighbors inX2, and since it is not adjacent to x3 it must have 16 neighbors
in X2 −X1,2 = N(x3). This implies that v has precisely 2 neighbors in X1,2.

In [56] it was shown that ifX75 exists, then it does not have a 16-regular subgraph. By removing
the disjoint union of cycles from the graph X75[X2] we obtain a 16-regular subgraph and hence
this configuration is impossible.

4.2.2 Case (1, 26, 42, 2)

Let X0, X1, X2, X3 be the sets of vertices having 0, 1, 2, and 3 neighbors in H , respectively. In
particular, let x0 ∈ X0 and x1 6= x2 ∈ X3. In what follows we prove a series of claim describing
the structure of a graph with this configuration.

Lemma 4.2.5. Vertices x1 and x2 are not adjacent.

Proof. Suppose x1 ∼ x2. There are up to isomorphism only two possible induced graphs on
H ∪ {x1, x2}. Moreover, if we add the vertex x0 we obtain 6 candidate graphs for an induced
subgraph ofX75. None of them interlacesX75, which was an easy task to check by computer.

Lemma 4.2.6. Vertex x0 is adjacent to both vertices in X3. Moreover, it has 2 neighbors in X1
and 28 neighbors in X2.
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Proof. For the sake of contradiction, suppose x0 is adjacent to k ∈ {0, 1} vertices ofX3. Let t be
the number of neighbors of x0 in X1. By double counting 2-paths from x0 to H we obtain:

4 · 16 = 3k + t+ 2(32− k − t) ,

implies k = t. Without loss of generality suppose that x1 is not adjacent to x0. By counting
the number of 2-paths in a similar way we obtain that x1 has 8 neighbors in X2. But by strong
regularity, x0 and x1 must have 16 common neighbors which is not possible since x0, x1 can share
at most k ≤ 1 common neighbors in X1 and 8 common neighbors in X2. Hence x0 is adjacent to
both x1 and x2 and so k = t = 2 and the claim follows.

In virtue of Lemma 4.2.6, let x′0, x′′0 be the vertices in X1 that are adjacent to x0.

Lemma 4.2.7. Vertices x1, x2 each have 19 neighbors inX1 and 9 neighbors inX2. In particular,
12 or 13 vertices of X1 are adjacent to both x1 and x2, 6 or 7 vertices only to x1, and 6 or 7 only
to x2.

Proof. The first part of the claim is an easy application of the already used double counting argu-
ment. Let nowNx1 andNx2 be the neighbors of x1 and x2 inX1 respectively. Since |Nx1∪Nx2 | ≤
26 (the size of X1), we must have |Nx1 ∩Nx2 | ≥ 12 by the inclusion-exclusion principle. On the
other hand, x1 and x2 have 16 common neighbors. Since x0 is a common neighbor and they have
2 or 3 common neighbors on H it follows that |Nx1 ∩ Nx2 | ≤ 13. The other assertions follow
easily.

Lemma 4.2.8. For i = 1, 2, the vertex xi is adjacent to at least one of the vertices in {x′0, x′′0}.

Proof. For i = 1, 2, the vertex xi has 10 common neighbors with x0. By Lemma 4.2.7, xi only
has 9 vertices in X2, thus it must be adjacent to at least one of x′0, x′′0 .

LetX−0
2 be the set of vertices inX2 that are not adjacent to x0. By Lemma 4.2.6, |X−0

2 | = 14.

Lemma 4.2.9. At most one vertex from X−0
2 is adjacent to x1, and at most one is adjacent to x2.

Proof. Vertex x1 shares at most 2 common neighbors with x0 in X1 (possibly x′0 or x′′0). Thus it
must have at least 8 out of 9 neighbors in X2 adjacent to x0. By symmetry, the claim holds for
x2.

Lemma 4.2.10. Each vertex inX75[X−0
2 ] that is not adjacent to any of the vertices in {x1, x2} has

degree t ≤ 2 and it has t neighbors in {x′0, x′′0}. Vertices (at most two) inX−0
2 that are adjacent to

exactly one of x1 and x2 have degree t− 1 inX75[X−0
2 ] and t ≥ 1 neighbors in {x′0, x′′0}. If there

exists a vertex in X−0
2 that is adjacent to both in x1 and x2, then it is adjacent to both vertices in

{x′0, x′′0} and has degree 0 in X75[X−0
2 ].

Proof. Let v ∈ X−0
2 . Notice that v must have 16 common neighbors with x0. First, assume it is

not adjacent to x1 or x2. Then their common neighbors can only be in {x′0, x′′0}, say t of them, and
in X2 \X−0

2 . By double counting 2-paths from v to H we obtain that v has 16 neighbors in X2.
Thus t of them must be in X−0

2 .
Second, assume that v is adjacent to exactly one of the x1, x2 (in this case it can be adjacent to

only one of them). Then it has 16 − 1 − t neighbors in X2 \X−0
2 . On the other hand, by double

counting, its degree in X75[X2] is 14. Thus it’s degree in X75[X−0
2 ] is t− 1.

Finally, if v is adjacent to x1 and x2, it has degree 12 inX75[X2], thus all these neighbors have
to be in X2 \X−0

2 and it also has to be adjacent to both vertices in {x′0, x′′0}.
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Lemma 4.2.11. Each of the vertices x′0, x′′0 has 15− t neighbors in X−0
2 , where t ∈ {1, 2} is the

number of its neighbors in {x1, x2}. Moreover, x′0 and x′′0 are not adjacent.

Proof. By double counting 2-paths from x′0 to H we have that x0 has 25 − 2t neighbors in X2.
Vertices x0 and x′0 have 10 common neighbors. Let s be equal to 1 if x′0 and x′′0 are adjacent and
0 otherwise. Vertices x0 and x′0 must have 10 − t − s common neighbors in X2, thus x′0 has
24−2t− (10− t−s) = 15− t+s neighbors inX−0

2 . Similar holds for x′′0 and since |X−0
2 | = 14,

x′0 and x′′0 have more than 10 common neighbors. Thus they are not adjacent and s = 0. The
lemma holds.

The above lemmas give enough structure to be able to computationally obtain a small list of
graphs that interlace X75 and must be induced subgraph of X75, provided that X75 contains a H
with this configuration.

Proposition 4.2.12. There are 3597 graphs of the formH ∪{x0, x
′
0, x
′′
0, x1, x2}∪X−0

2 that inter-
lace X75.

4.2.3 Case (2, 23, 45, 1)

Let X0 = {x0, x1}, X1, X2, X3 = {x3} be the sets of vertices having 0, 1, 2, and 3 neighbors in
H respectively. Again, we start by proving certain structural claims about this configuration.

Lemma 4.2.13. x0 6∼ x1.

Proof. If x0 ∼ x1 then the number of 2-paths from x0 to H is at most 3 + 2 · 30. But since x0 is
not adjacent to any vertex of H , it should have precisely 4 · 16 2-paths to it.

Lemma 4.2.14. x0 ∼ x3 and x1 ∼ x3.

Proof. Suppose x0 is not adjacent to x3 and let N0, N1, respectively, be the sets of neighbors of
x0, x1 in X2. By double counting 2-paths to H from x0 or x1 we have |N0| = 32 while |N1| =
32−2t where t ∈ {0, 1} depending on whether x1 is adjacent to x3 or not. Since all the neighbors
of x0 are in X2, we have |N0 ∩ N1| = 16. But this implies |N0 ∪ N1| = 48 − 2t ≥ 46 which is
not possible as X2 has size 45.

Lemma 4.2.15. Vertices x0 and x1 each have precisely one neighbor in X1. In particular, these
two neighbors are distinct.

Proof. Let t be the number of neighbors of x0 in X1. By counting 2-paths from x0 to H we have

16 · 4 = 3 + t+ 2 · (32− 1− t) ,

which gives that t = 1, and x0 has 30 neighbors in X2. Same holds for x1. Let again N0, N1 be
the sets of neighbors of x0, x1 in X2. Then |N0 ∪N1| ≤ 45, thus |N0 ∩N1| ≥ 15. Since x0 and
x1 have a common neighbor x3, |N0 ∩N1| = 15 and |N0 ∪N1| = 45. This implies also that x0
and x1 cannot have a common neighbor in X1.

The last two lemmas now imply that X2 can be partitioned into sets X0
2 , X

{0,1}
2 , X1

2 each of
size 15 such that every vertex inXi

2 is adjacent to xi and not adjacent to x1−i for i = 0, 1 and every
vertex inX0,1

2 is adjacent to both x0 and x1. Let us denote the neighbors of x0, x1 inX1 by x′0 and
x′1 respectively.
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Lemma 4.2.16. If x3 is adjacent to x′1 then it has 1 neighbor inX0
2 , otherwise it has no neighbor

in X0
2 .

Proof. The vertex x3 has 10 neighbors in X2 by double counting of 2-paths to H . On the other
hand it must have 10 common neighbors with x1. Notice that the common neighbors can only be
inX2 ∪{x′1}. If x3 is adjacent to x′1, then it must have 9 neighbors inX0,1

2 ∪X1
2 thus 1 inX0

2 . On
the other hand, if x3 is not adjacent to x′1, then it must have all 10 neighbors in X0,1

2 ∪X1
2 and no

neighbor in X0
2 .

Lemma 4.2.17. The graph X75[X0
2 ] has maximal degree 2. If v ∈ X0

2 has degree 2, then it is not
adjacent to x3 but it is with x′1, if it has degree 1, it is adjacent with either both x3 and x′1 or none
of them, and if it has degree 0, it is adjacent to x3 and not adjacent with x′1.

Proof. Pick a vertex v ∈ X0
2 and let s ∈ {0, 1} indicate if it is adjacent with x′1 and t ∈ {0, 1}

indicate if it is adjacent with x3. Let r be the number of neighbors of v in X2. We count 2-paths
from v to H:

2 · 10 + 2 · 16 = 2 · 3 + 3t+ 2r + (32− 2− t− r − 1) .

Thus r = 17−2t. Vertices v and x1 must have 16 common neighbors. This implies that the number
of neighbors of v inX0,1

2 ∪X1
2 is 16− t− s. Hence we have that v has (17− 2t)− (16− t− s) =

1− t+ s neighbors in X0
2 and hence the lemma follows.

By generating graphs with the established structure we infer that none of them interlacesX75.

Proposition 4.2.18. No graph of the form X0
2 ∪ {x0, x1, x

′
1, x3} ∪H interlaces X75.

4.2.4 Case (0, 29, 39, 3)

Let X1, X2 and X3 = {x0, x1, x2} be the respective subsets of vertices of X75. There are three
non-isomorphicways to introduce 3 vertices toH by joining each vertex to 3 vertex ofH . Each such
graph G1, G2, G3 can be uniquely described by a tuple ~n = (n1, n2, n3, n4) counting the number
of edges from the i′th vertex ofH toX3. By relabeling the vertices ofH if needed we obtain three
tuples (0, 3, 3, 3), (1, 3, 3, 2) and (2, 2, 2, 3). We proceed by establishing certain structural claims
about this configuration.

Lemma 4.2.19. The vertices of X3 form an independent set.

Proof. No matter how we introduce edges among the vertices of X3 in the graph H ∪X3 we do
not obtain a graph interlacing X75.

Lemma 4.2.20. Every vertex x ∈ {x0, x1, x2} has 21 neighbors in X1 and 8 neighbors in X2.

Proof. Let x have k neighbors in X1 and ` = 32− 3− k neighbors in X2. We count the number
of paths of length 2 from x to H . We have 3 · 10 + 16 = 3 · 3 + k + 2 · (32 − k − 3) and thus
k = 21 and ` = 8.

LetX0
2 , X

1
2 , X

3
2 be the neighbors inX2 of x0, x1, x2 respectively. We have proved that |X0

2 | =
|X1

2 | = |X2
2 | = 8. Notice that the sets X0

2 , X
1
2 , X

2
2 need not be disjoint.

Lemma 4.2.21. It holds |X0
2 ∩X1

2 |, |X0
2 ∩X2

2 |, |X1
2 ∩X2

2 | ∈ {0, 1}.
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Proof. Vertices x0 and x1 have 16 common neighbors, at least 2 of them are inH . Each of x0, x1
has 21 neighbors in X1, where |X1| = 29. Thus they must have at least 13 common neighbors
in X1. The latter implies that they have at most one common neighbor in X2. Same holds for all
other pairs from the assertion of the lemma.

Lemma 4.2.22. For i ∈ {1, 2} the graph X75[X0
2 \Xi

2] is triangle-free.

Proof. Assume that there exists a triangle inX75[X0
2 \Xi

2]. Together with x0 it forms a 4-cliqueQ.
Assume this Q is not contained in a 5-clique. Vertex xi is not adjacent to any of the vertices of Q.
Thus we have have a 4-clique with some vertices that are not adjacent to it. We have already covered
this configuration before and shown that it is not feasible. On the other hand, if Q is contained in
aK5, we have a 5-clique and a vertex that is adjacent to at most one vertex on it. Again, this is not
possible, since every vertex not on a 5-clique must have precisely two neighbors in it.

Let X−0
1 denote the subgraph of X1 induced on all the vertices not adjacent to x0 and let Xi

1
be the set of vertices in X1 adjacent to xi for i ∈ {0, 1, 2}.

Lemma 4.2.23. The graphX−0
1 has 8 vertices. At most one of the vertices inX−0

1 is not adjacent
to x1 and at most one is not adjacent to x2. Moreover, the graph onX−0

1 \Xi
1, for i ∈ {1, 2}, has

no triangles. Each vertex v ∈ X−0
1 has degree k in X−0

1 at most 3 and is adjacent to precisely
9−t−m+k vertices inX0

2 , where t ∈ {0, 1, 2} is the number of vertices adjacent to v in {x1, x2}
andm ∈ {0, 1} the number of common neighbors of v and x0 on H .

Proof. By Lemma 4.2.20, |X0
1 | = 21, thus |X−0

1 | = 8. For i ∈ {1, 2}, xi and x0 share at least 2
neighbors onH . Since they are non-adjacent, they share 16 neighbors, thus at most 14 inX1. This
implies |X0

1 ∩Xi
1| ≤ 14, thus |X0

1 ∪Xi
1| ≥ 21 + 21− 14 = 28. Since |X1| = 29 we see that there

exist at most one vertex in X1 that is not adjacent to x0 and to xi.
If there is a triangle in the graph induced byX−0

1 \Xi
1, this triangle forms aH with x0, while

xi is not adjacent to any of its vertices. If this 4-clique is not a part of a 5-clique the assertion
follows since this case has already been dealt with (aH with some vertices not adjacent to it). On
the other hand, if this H is a part of a K5, we have an induced subgraph of K5 together with a
vertex that is adjacent to one or none of the vertices onK5. Again, this is not possible since every
vertex not onK5 has precisely two neighbors in V (K5). Hence X0,2

1 is indeed triangle-free.
Now let v ∈ X−0

1 be as in the lemma. Denote with j the number of its neighbors in X1. By
counting 2-paths to H we get

10 + 3 · 16 = 3 + 3t+ j + 2(32− 1− t− j),

hence j = 7 + t. Denote with ` the number of neighbors of v in X0
2 . Vertex v and x0 have 16

common neighbors, thus

16 = (j − k) + `+m = (7 + t− k) + `+m,

from which we get 9− t−m+ k = ` ≤ 8. This implies also that k ≤ 2.

Lemma 4.2.24. Let v be a vertex of X75[X0
2 ] with degree k, t ∈ {0, 1, 2} neighbors in {x1, x2},

andm ∈ {1, 2} the number of common neighbors of v and x0 on H . Then:

k +m+ t ≤ 3.

In particular k ≤ 2.

45



Proof. Let v ∈ X0
2 . Denote with j the number of neighbors of v inX1. By counting 2-paths from

v to H we get:

2 · 10 + 2 · 16 = 2 · 3 + 1 · 3 + 3t+ j + 2(32− 2− 1− t− j),

thus j = 15 + t. Now let ` ≤ 8 be the number of neighbors of v in X−0
1 . Vertices v and x0 have

10 common neighbors:

10 = k +m+ (j − `) = k +m+ (15 + t− `),

thus 5 + k +m+ t = ` ≤ 8 and k +m+ t ≤ 3. Sincem ∈ {1, 2}, k ≤ 2.

By generating all graphs induced by H ∪ {x0, x1, x2} ∪X0
2 ∪X−0

1 we obtain

Proposition 4.2.25. There are 18089 non-isomorphic graphs of the formH ∪{x0, x1, x2}∪X0
2 ∪

X−0
1 that interlace X75.

The case analysis carried in this section resulted in a list of 21686 graphs, resulting in 6688644
star complements and roughly 40000 comparability graphs. By verifying that they all have clique
number smaller than 56 we established Proposition 4.2.1.

Claim Program Output
Lemma 4.2.5 K4/126422/Claim-1.sage /
Proposition 4.2.12 K4/126422/Case126422.sage K4/12622/cands126422.g6
Proposition 4.2.18 K4/223451/Case223451.sage /
Lemma 4.2.19 K4/029393/Claim1.sage /
Proposition 4.2.25 K4/029393/generateFinal.sage K4/029393/cands029393.g6
Lemma 4.3.3 K5/triangles/extendTriangle.sage K5/triangles/candsTriag.g6

Table 4.1: Sage programs constructing small induced structure.

4.3 Main result

Let K5 be a 5-clique of X75 with vertex set {k1, . . . , k5}. The only possible configuration of
vertices not inK5 is (0, 0, 70, 0, 0, 0), therefore every vertex ofX75 that is not inK5 has precisely
two neighbors inK5. For 1 ≤ i < j ≤ 5, let Xi,j be vertices in V (X75)\V (K5) that are adjacent
to ki and kj . Since ki and kj are adjacent, they must have 10 common neighbors, 3 of them already
onK5. Hence V (G)\V (K5) is partitioned into 10 sets of 7 vertices, namelyX0,1, X0,2, . . . , X4,5.
In what follows we establish structural results about these partitions.

Lemma 4.3.1. For any 1 ≤ i < j ≤ 5 the graphXi,j is eitherK7 orK3 ∪K4 orK1 ∪K3 ∪K3.

Proof. Assume there exists an edge e = {x, y} in the graph Xi,j . Then the vertices {x, y, ki, kj}
induce a 4-clique. By the result of the previous section, every 4-clique is contained in a 5-clique.
Clearly, the additional vertex must be in Xi,j . Hence we have proved that every edge e in Xi,j is
contained in a triangle in Xi,j . Let T be a triangle in Xi,j and v ∈ Xi,j a vertex not on T . Since
T ∪ {ki, kj} induces a 5-clique, every vertex not on this 5-clique is adjacent to exactly 2 vertices
on this clique. Since v is adjacent to ki and kj , it is not adjacent to T and the lemma follows.
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As it turns out every pair of triangles in distinct partitions Xi,j , Xk,` induce quite a regular
structure.

Lemma 4.3.2. Let 1 ≤ i < j ≤ 5, 1 ≤ k < ` ≤ 5 and let T, T ′ be two triangles ofXi,j andXk,`,
respectively. Let c = |{i, j, k, `}|. If c = 3, then the edges from T to T ′ form a perfect matching.
If c = 4, they form a complement of a perfect matching.

Proof. First assume c = 3. Since T ∪ {ki, kj} forms a 5-clique, every vertex of T ′ is adjacent
to exactly 2 vertices in this 5-clique. Since c = 3, it must be adjacent to exactly one vertex in T .
Similarly, every vertex of T must be adjacent to exactly one vertex in T ′. Thus, the edges from T
to T ′ form a perfect matching. The case when c = 4 is similar.

Our next lemma shows that not all partitions Xi,j contain a triangle. In fact at most 7 do.

Lemma 4.3.3. There are at least three distinct pairs {i, j}, {k, `}, {m,n} such thatXi,j , Xk,` and
Xm,n are independent sets of X75.

Proof. The proof uses a two stage pruning. Assuming at most two of the setsXi,j , 1 ≤ i < j ≤ 5,
are independent, then at least 8 of these contain triangles. There exist two non-isomorphic ways to
choose exactly eight sets amongXi,j , 1 ≤ i < j ≤ 5, which contain triangles. By Lemma 4.3.2 if
Xi,j contains a triangle then it is isomorphic either to K3 ∪K4 or K1 ∪K3 ∪K3. Lemma 4.3.1
forces a structure of edge-sets between such pairs of triangles.

We have written a Sage program to construct all possibilities pruning out configurations that do
not interlaceX75. Finally 117 non-isomorphic comparability graphs emerged starting from a single
configuration. None of them contains a clique on 56 vertices and thus the lemma follows.

We are now able to prove our main theorem. The lists of graphs obtained in this part are too
large to be hosted online hence they are not included in Table 4.1. However they can be obtained
by a request to the authors.

Theorem 4.3.4. The graph X75 does not exist.

Proof. By the previous lemma, at least 3 graphs among Xi,j , for 1 ≤ i < j ≤ 5, are indepen-
dent sets. It is an easy check that there are 4 non-isomorphic configurations for the choice of 3 sets
amongXi,j . These are: (X1,2, X2,3, X4,5), (X1,2, X2,3, X1,3), (X1,2, X2,3, X2,4), (X1,2, X2,3, X3,4).
Notice that in all combinations we have sets X1,2, X2,3.

First we analyze the possible candidates for graphs induced by {k1, . . . , k5}∪X1,2∪X2,3. We
do this by generating all bipartite graphs that can representX1,2∪X2,3. This is done usingMcKay’s
program genbg. Adding the vertices {k1, . . . , k5} and removing non-interlacing graphs we end up
with a list of 654325 graphs. By computing sc(G) for every such graphG and extending it to have
order 19 we end up with a list of 361547477 star complements. By computing their respective
comparability graphs and removing isomorphisms we end up with about 1006 graphs. We have
verified that none of these graphs has a clique of order 56 hence implying our assertion.

4.4 Computational aspects

In this section we briefly describe the computational tools and resources used to produce our result.
As described in Section 4.1.1, our approach required generating a list of candidates for an induced
subgraph of X75, compute their comparability graphs and check their clique numbers. Most pro-
grams were written and tested independently in C and Sage, however most of the computation was
performed only by C programs due to their efficiency.
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4.4.1 Extending graphs and computing comparability graphs

As described in Section 4.1.1 we generated a list of graphs L such that if X75 exists then one
of the graphs in L must be an induced subgraph of X75. In order to rule out the existence of
X75 we had to obtain star complements for each of the graphs in L and check the clique number
of its comparability graphs. Some of the graphs in L already had star complements as induced
subgraphs and were easy to handle. However some of the graphs did not, and in this case we had
to find maximal induced subgraphs not having 2 as their eigenvalue, and extend them to have order
19. When choosing these subgraphs we tried to maximize the order of the automorphism group
while minimizing the number of obtained subgraphs—note that two non isomorphic members of
L may have isomorphic subgraphs. Both lists L and the one obtained from it are available on the
GitHub page.

Let us remark that the process of extending graphs is computationally feasible whenever the
obtained subgraphs have order 17. For otherwise we obtained far too many graphs of order 19.

The task of extending graphs to have order 19 was done by the already introduced program
extend.c which takes as input a file with graphs given in graph6 string format and for each graph
outputs all possible ways to introduce a new vertex to it so that the newly obtained graph interlaces
X75. If the input graph has a graceful pair of vertices then the extensions giving the minimal
amount of graphs are written. Again, graphs are written in graph6 format.

After each iteration of extend.c we used McKay’s shortg [58] program to remove isomorphic
graphs from the obtained lists. Extending a graph of order 18 takes roughly 0.5 seconds on a
standard desktop machine and the whole computation for the proof of our main result took roughly
240 CPU hours.

To compute comparability graphs we wrote a program that takes as input a list of star comple-
ments and for each output writes the graph6 representation of its comparability graph. The pro-
gram is called compGraph2graph6.c and is found on GitHub [9]. We have found that the average
comparability graph gets computed in 0.5 seconds and hence the instances of Theorem 4.3.4 were
computed in about 5000 CPU hours. Let us note that the program does not output comparability
graphs with order smaller than the clique number sought - in our case 57.

The computationally most intensive part was computing the clique number of the obtained
comparability graph. This step took roughly 150000CPUhours andwas carried on a computational
grid of 2000 CPU’s. The computational grid that we used comprised of Intel Xeon CPUs clocked
at 2670Mhz.

Both programs use the GNU GSL library for linear algebra routines and make use of the preci-
sion guaranteed by their implementation. Finally let us remark that in some of the steps we made
use of the GNU parallel program [71].

4.4.2 Computing the clique number

While it is in general hard to compute the clique number of a graph, the structure of comparability
graphs makes this task a little easier. As one may suspect by its definition, Comp offers a lot of
symmetry which we exploit as follows. In what follows, G[N(v)] will denote the subgraph of G
induced by the neighbors of a vertex v ∈ V (G).

Suppose we wish to compute the clique number ω(G) and let v ∈ V (G). Then either v is
contained in a maximal clique of G or is not. In the latter case the maximal clique of G equals the
maximal clique in Comp−v. In other words
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ω(G) = max(ω(G− v), ω(G[N(v)])) + 1) .
Now, the key fact in computing ω(Comp) is that its automorphism group is fairly large and

hence in computing its clique number we can remove the entire orbit o(v) of a vertex v. Given that
o(v) is fairly large, the obtained graph Comp−o(v) is much smaller. We need not stop here. The
key property that is used in the above idea is the fact that if u, v ∈ V (G) are in the same orbit of
Aut(G), then the graphs G[N(u)] and G[N(v)] are isomorphic. For our purposes we can define
the extended orbit of a graph G as a partition of Õ(G) of V (G) such that two vertices u, v are in
the same part if and only if G[N(u)] ∼= G[N(v)]. Summarizing the above idea into pseudo code
we designed the following algorithm.

Algorithm 1 Algorithm for computing clique numbers of symmetric graphs
1: procedure cliqueNumber(G,c)
2: cl← 0
3: while |V (G)| > c do
4: Õ ← extendedOrbits(G)
5: if |Õ| = |V (G)| then
6: break
7: o← some orbit of Õ
8: v ← an element of o
9: cltmp← cliqueNumber(G[v]), c) + 1
10: if cltmp > cl then
11: cl← cltmp

12: G← G− o
return max(cl, cliqueNumberBruteForce(G))

In order to compute the clique number of our comparability graphs we used a variant of Al-
gorithm 1 which leaves out two major details. Namely the computation of the extended orbits of
G and the cliqueNumberBruteforce routine. For the latter, we needed an established program that
calculates the clique number of a graph. We have found out that on our instances the program
mcqd [53] drastically outperforms the well known clique finding algorithm Cliquer [62]. Hence
whenever our input graph is small enough, we simply use mcqd. Since we only need to determine
whether our graph has a clique of size at least 57 or not we made use of an additional optimization.
Suppose we are trying to decide whether a graph G has a clique of size k and the greedy coloring
algorithm shows that we can properly color the vertices of G using less than k colors. Then the
clique number of G is smaller than k and we can stop our search. This is the essential idea behind
the implementation of mcqd and we used it to obtain an even more efficient test for comparability
graphs.

The second problem of computing the extended orbits is reduced to the problem of computing
the orbits of the automorphism groups and canonical forms of graphs. While the computational
complexity of these two problems is not settled, it is well known that in practice both problem offer
efficient practical solutions. For example, it takes Bliss [48] about 5 seconds of CPU time, on our
modest laptop, to compute the full automorphism group of a typical comparability graph of order
6000 and density 0.4.

In order to compute the extended orbits of a graph G we first compute the orbits O of its
automorphism group. Finally for every representative of O we compute the canonical form of
G[N(v)] and join orbits with equal canonical forms.
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A simple implementation of the above algorithm was implemented in Sage and is available on
the GitHub [9] repository under the name cliqueNumber.sage.

Finally, let us remark that both mcqd and Bliss were integrated into Sage for the purposes of
this thesis.

4.5 Final remarks

We have shown that a (75, 32, 10, 16) SRG does not exists by presenting a classification approach
based on the star complement technique. The main property that we exploited was the fact that such
a SRG has an eigenvalue of high multiplicity, namely 56 which implies that the star complement
graph has 19 vertices. Thus one can avoid the combinatorial explosion of constructing all possible
star complements, provided that one can build large enough induced structure for the star comple-
ment graph. In our case this was established by building the star complement around a maximal
clique of our SRG. Two things were crucial for our approach to work. First was the fact that many
of the obtained comparability graphs were isomorphic thus significantly reducing the number of
graphs whose clique number was to be determined. The second crucial part was the fact that com-
parability graphs had large automorphism groups thus allowing to exploit their symmetries when
computing their clique number. We believe that a similar approach can be used to classify at least
one of the following open parameters (69, 20, 7, 5), (95, 40, 12, 20), (96, 45, 24, 18), (99, 42, 21, 15).
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Slovenski povzetek

Ta povzetek ima enako strukturo kot angleški del disertacije. Razdeljen je na 4 glavne dele - uvod,
kromatični polinom, krepko regularni grafi in končno poglavje o (75, 32, 10, 16) krepko regular-
nih grafih. Uvod služi kot orientacija v osnovne koncepte, ki jih srečamo v nadaljnjih poglavjih. V
poglavju o kromatičnem polinomu navedemo nekaj osnovnih lastnosti tega objekta. Nadaljujemo
z obravnavanjem vprašanja, ali obstaja graf, ki ni sebi komplementaren hkrati, pa ima enak kroma-
tični polinom kot njegov komplement. Problem posplošimo tudi na Tuttov polinom. V poglavju o
krepko regularnih grafih predstavimo nekaj osnovnih lastnosti takšnih grafov. Nadaljujemo z zani-
mivo povezavo med konveksnimi cikli in poddružino krepko regularnih grafov - Moorovi grafi. V
zadnjem poglavju si podrobneje pogledamo strukturo (75, 32, 10, 16) krepko regularnih grafov in
pokažemo, da takšni grafi ne obstajajo.

Kazalo
Osnovni pojmi teorije grafov . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Kromatični polinom in Akiyama-Hararyjev problem . . . . . . . . . . . . 56
Krepko regularni grafi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Neobstoj (75, 32, 10, 16) krepko regularnega grafa . . . . . . . . . . . . . . 58
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Osnovi pojmi teorije grafov

Naj bo V končna množica. Množico vseh podmnožic V moči k označimo z
(V
k

)
. Urejen par

G = (V,E), kjer E ⊆
(V

2
)
je graf. Pravimo, da ima G množico vozlišč V (G) = V ter množico

povezav E(G) = E. Predstavljena definicija grafov je abstraktna, vendar obstaja mnogo aplika-
tivnih scenarijev, v katerih nastopajo grafi. Grafe namreč srečamo pri modeliranju široke palete
problemov v kemiji, sociologiji ter najpomembneje računalništvu. Ravno zato ni presenečenje, da
je teorija grafov v zadnjih nekaj desetletjih dožvela pravi razcvet. Bralce, ki jih zanima pregled ra-
zvoja teorije grafov, priporočamo vpogled v knjige [47], [20] in [29]. V nadaljevanju tega razdelka
omenimo zgolj pojme in rezultate, ki so pomembni za našo disertacijo.

Če za dve vozlišči x, y ∈ V (G) množica {x, y} pripada E(G) pravimo, da sta x in y sosednji
in pišemo x ∼G y. Če je graf G jasno določen iz konteksta, ga v notaciji za sosednost izpustimo.
Število vozlišč, s katerimi je neko vozlišče v ∈ V (G) sosedno, pravimo stopnja vozlišča v in jo
označimo z d(v). Če imajo vozlišča danega grafa enake stopnje, potem pravimo, da je graf regula-
ren z valenco k, kjer je k stopnja poljubnega vozlišča. Primer regularnega grafa je tako imenovani
polni graf na n vozliščih, Kn. Definiran je kot graf z množico vozlišč V (Kn) = {1, . . . , n} ter(V

2
)
za množico povezav. Dejstvo, da smo za množico vozlišč polnega grafa vzeli {1, . . . , n}, je

nepomembno. Poljubna množica moči n bi dala strukturno enak graf. Slednji pojav modeliramo s
pojmom izomorfizma grafov. BoditaG inH grafa ter f : V (G)→ V (H) bijekcija, da za vsak par
x, y ∈ V (G) velja

x ∼G y ⇐⇒ f(x) ∼H f(y) .

Takšni preslikavi f pravimo izomorfizem grafa. Za grafa G in H pa pravimo, da sta izomorfna.
Izomorfizmu tipa f : V (G) → V (G) pravimo avtomorfizem. Množico vseh avtomorfizmov da-
nega grafa G označimo z Aut(G). Ni se težko prepričati, da tvori Aut(G) grupo za operacijo
kompozicije funkcij. Za dani graf G definiramo njegov komplement G kot graf z množico vozlišč
V (G) ter množico povezav

(V (G)
2
)
\E(G). Grafu, ki je izomorfen svojemu komplementu, pravimo

sebi komplementaren graf. Če je e povezava grafa G, potem z G − e označimo graf z množico
vozlišč V (G) in z množico povezav E(G) \ {e}. Graf G − v za vozlišče v ∈ V (G) je definiran
podobno.

Operacijo skrčitve dane povezave e = {x, y} označimo zG/e in jo definiramo kot graf katerega
množica vozlišč je V (G − x) ter povezav E(G − x) ∪ {{x, x′} | x′ 6= x ∧ x′ ∼G y}. V
disertaciji bomo srečali tudi pojem grafa povezav. Za dani graf G tvorimo graf povezav L(G)
tako, da za množico vozlišč vzamemo E(G), dve vozlišči L(G) pa sta sosednji natanko takrat, ko
imata pripadajoči povezavi E(G) skupno krajišče.

Primer grafa povezav predstavlja tako imenovani Petersenov graf, narisan na sliki 1. Z lahkoto
se prepričamo, da je Petersenov graf L(K5). Kot zadnjo omenjano znano operacijo kartezičnega
produkta. Za grafa G in H označimo njun kartezični produkt z G�H in ga definiramo kot graf,
katerega množica vozlišč je V (G)× V (H), soseščina med vozlišči pa je definirana s predpisom

(u, v) ∼G�H (u′, v′) ⇐⇒ u = u′ ∧ v ∼H v′ ali u ∼G u′ ∧ v = v′ .

Primer 4.5.1. Klasičen primer kartezičnega produkta je graf hiperkocke dimenzije n definiran kot

Qn = �n
i=1K2 .

Ekvivalentna definicija n-kocke pravi, da jeQn graf katerega vozlišča so vsi binarni nizi dolžine n.
Dve vozlišči (niza) pa sta sosednja natanko tedaj, ko se razlikujeta v natanko eni koordinati. Slika
2 ponazarja takšno konstrukcijo hiperocke dimenzije 4.
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Slika 1: Najbolj znan objekt teorije grafov - Petersenov graf.
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Slika 2: Hiperkocka dimenzije 4.

53



Za graf H pravimo, da je podgraf grafa G če E(H) ⊆ E(G) in V (H) ⊆ V (G). Pišemo
H ⊆ G. Če za poljuben par x, y ∈ V (H) velja, da x ∼G y =⇒ x ∼H y, potem pravimo, da je
H induciran podgraf grafa G. Če H ⊆ G in je H izomorfen polnemu graf, potem pravimo, da je
H klika grafa G. Številu točk največje klike v grafu G imenujemo klično število in ga označimo
z ω(G). Problem določanja kličnega števila je algoritmično težak problem. V razdelku 4.5 smo
predstavili metodo za pohitritev računanja kličnega števila za bogat razred grafov.

SprehodW v grafuG je zaporedje vozlišč v1, . . . , vk, ki zadošča pogoju, da za vsak 1 ≤ i < k
velja vi ∼ vi+1. Če so vozlišča sprehoda različna, potem pravimo, da jeWpot v grafu G. Če za
W velja, da je v1 = vk, in so v2, . . . , vk−1 različna vozlišča, potem pravimo, da jeW cikel dolžine
k + 1. Grafu, kjer za vsak par vozlišč u, v ∈ V (G) obstaja sprehod od u do v, pravimo povezan
graf, z dG(u, v) pa označimo dolžino najkrajše poti med u in v. Z oznako Diam(G) označimo
izraz maxu,v∈V (G) dG(u, v) in ga imenujemo premer grafa G. Dolžini najkrajšega cikla grafa G
pravimo ožina grafa. Če je G povezan 2-regularen graf z n vozlišči, ga imenujemo cikel dolžine n
in ga označimo s Cn.

Barvanja grafov

Naj bo ck : V (G)→ {1, . . . , k} taka funkcija, da za poljubni dve vozlišči x, y ∈ V (G) velja

x ∼ y ⇒ c(x) 6= c(y) .

V takšnem primeru pravimo, da je c pravilno barvanje grafa G. Najmanjšemu številu k, ki ga-
rantira obstoj takšne funkcije, pravimo kromatično število grafa G in ga označimo z χ(G). Zveza
χ(Kn) = n takoj da neenakost χ(G) ≥ ω(G). Kljub temu, da po definiciji χ(G) = k implicira
obstoj pravilnega k barvanja grafa G, v splošnem takšno barvanje ni enolično. Naj ĉk označuje
število pravilnih barvanj grafa G. Funkciji, ki šteje pravilna barvanja grafa G, pravimo kromatični
polinom. Definiramo jo kot predpis PG : R → R z lastnostjo, da je za vsako naravno število k
zadoščena enakost

pG(k) = ĉk .

Osnovna trditev o kromatičnem polinomu vzpostavlja naslednjo lastnost.

Trditev 4.5.1. Če je e = {x, y} povezava grafaG, potem velja zveza pG(k) = pG−e(k)−pG/e(k).

Ker je pK1(k) = k ni težko videti, da trditev 4.5.1 upravičuje poimenovanje funkcije pG(x)
kot polinom. V disertaciji predstavimo nekaj osnovnih lastnosti kromatičnega polinoma.

Grafovske matrike in spektralna teorija grafov

V tem odseku navajamo nekaj rezultatov iz spektralne teorije grafov, ki nam bodo omogočali lažje
razumevanje nadaljnjih poglavjih. Če jeG graf z množico vozlišč {v1, . . . , vn}, potem zAG ozna-
čimo njegovo matriko sosednosti, ki je definirana kot binarna n×nmatrika AG = (ai,j)ni,j=1 kjer
je ai,j = 1, če in samo če vi ∼ vj .

Naj bo wki,j število sprehodov dolžine k med vi in vj . Naša prva trditev ne potrebuje nobenih
dodatnih pojmov.

Trditev 4.5.2. Ob upoštevanju zgornje notacije velja Ak = (wki,j)ni,j=1.
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Na tem mestu naj omenimo, da trditev 4.5.2 ponuja učinkovit algoritem za računanje diametra
danega grafa. Ob predpostavki, da je G povezan, je dovolj poiskati minimalen k tako, da so vsi
elementi Ak neničelni. Izkaže se, da je velika verjetnost, da je pristop temeječ na tej ideji najbolj
učinkovit algoritem za ta problem [66].

Matrika AG je realna in simetrična, zato so njene lastne vrednosti realna števila. Z izrazom
lastne vrednosti grafa G bomo imeli v mislih lastne vrednosti matrike AG, ki jih bomo označili z

λ1(G) ≥ · · · ≥ λn(G) .

Graf G bomo iz opisane notacije spustili vsakič, ko bo G znan iz danega konteksta.
Veliko strukturnih lastnosti grafa G izhaja iz lastnih vrednosti matrike AG. Prvi rezultat, ki ga

predstavimo sega v leto 1962. Zanj ima zaslugo Harary [42]. Naj za podgraf H grafa G oznaka
c(H) šteje število povezanih komponent grafa H , ki so cikli. Podobno naj r(H) označuje število
povezanih grafa G, ki so izomorfni K2. Naj bo Cn(G) množica vseh vpetih podgrafov grafa G,
katerih povezane komponente so izomorfneK2 ali ciklu.

Izrek 4.5.3. Za vsak graf G velja

detAG =
∑

H∈Cn(G)
(−1)r(H)2c(H) .

Ker je iti koeficient karakterističnega polinoma AG vsota determinant vseh i× i glavnih pod-
matrik, takoj dobimo tudi naslednjo trditev.

Trditev 4.5.4. Za i-ti koeficient ci karakterističnega polinoma matrike AG velja zveza

(−1)ici =
∑

H∈Ci(G)
(−1)r(H)2c(H) .

Kot je prvi opazil Sachs [68], nam zgornja trditev omogoča določiti liho ožino danega grafa
ter tudi prešteti število najkrajših lihih ciklov.

Posledica 4.5.5. Naj bo G graf lihe ožine 2r + 1 in

p(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn,

karakteristični polinom AG. Tedaj velja

c3 = c5 = · · · = c2r−1 = 0 .

Število (2r + 1)-ciklov v G pa je
−c2r+1/2 .

Prepletanje

Za zaporedji realnih števil λ1 ≥ · · · ≥ λn ter µ1 ≥ · · · ≥ µm, pri čemer je n ≥ m, pravimo, da se
prepletata, če je

λi ≥ µi ≥ λn−m+i za i ∈ {1, . . . ,m} .

Znani izrek iz linearne algebre zagotavlja, da lastne vrednosti vsakega induciranega podgrafa
prepletajo lastne vrednostni originalnega grafa [39]. Slednje je zelo uporabno dejstvo, ki je obrodilo
veliko rezultatov v teoriji grafov.
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Za naše namene bomo potrebovali močnejšo verzijo principa prepletanja, ki jo bomo formulirali
na naslednji način. Naj bo V = (V1, . . . ,Vk) razbitje V (G). Naj bo e(Vi,Vj) število povezav med
vozlišči v Vi in vozlišči v Vj če i 6= j sicer pa število povezav vmnožici Vi. Naj boAV = (ai,j)ki,j=1
matrika definirana s predpisom

ai,j =


e(Vi,Vj)
|Vi| if i 6= j

2e(Vi)
|Vi| if i = j

.

Izkaže se, da lastne vrednosti matrike AV prepletajo lastne vrednosti grafaG, kar strnemo v nasle-
dnjo trditev.

Trditev 4.5.6. Naj bo G graf in V razbitje njegovih vozlišč. Tedaj lastne vrednosti AV prepletajo
lastne vrednosti G.

Kot bomo videli v nadaljevanju, nam princip prepletanja omogoča, da za dani graf H učin-
kovito določimo, ali je induciran podgraf v nekem večjem grafu G, katerega obstoja ne poznamo,
poznamo pa njegove lastne vrednosti.

Kromatični polinom in Akiyama-Hararyjev problem

Pojem kromatičnega polinoma je prvi vpeljal Birkhoff [18] z željo, da bi mu slednje pomagalo
rešiti problem štirih barv. V jeziku kromatičnega polinoma problem štirih barv pravi, da za vsak
ravninski graf velja pG(4) > 0. Sledne trditve Birkhoffu ni uspelo dokazati, vendar je neodvisno
od tega pojem kromatičnega polinoma zaživel.

Študij kromatičnega polinoma se je skozi desetletja nadaljeval in v letu 1968 je Read objavil
članek [65], v katerem je vzpostavil veliko osnovnih lastnosti kromatičnega polinoma. Ključen
pojem vpeljan v omenjenem delu je bil pojem kromatične ekvivalence. Za grafa G in H pravimo,
da sta kromatično ekvivalentna, če je pG(k) = pH(k). V kontekstu te definicije pravimo, da je graf
G kromatično enoličen, če je kromatično ekvivalenten zgolj z njemu izomorfnimi grafi. Primer
takšnega grafa je npr. cikel. Določanje grafov, ki so kromatično enolični, je široko področje teorije
grafov [51, 52].

V poznih sedemdesetih letih sta Akiyama in Harary objavila vrsto člankov [3, 4, 5, 6, 2, 8, 7, 1],
ki je inicirala karakterizacijo grafov, ki se z njihovimi komplementi ujemajo v izbranih invariantah.
Slednje je obrodilo področje teorije grafov, ki je aktivno vse do danes [59]. V sklopu njunih raz-
iskovanj sta postavila tudi vprašanja in odprte probleme. Konkretno so v [7] vprašala, ali obstaja
graf, ki ni sebi komplementaren, vendar ima enak kromatičen polinom kot njegov komplement.
Odgovor na slednje vprašanje je pozitiven, dokaz pa sta podala Xu in Liu [75], ki sta skonstruirala
neskončno družino takšnih grafov. Lastnost njune konstrukcije je, da imajo dobljeni grafi enako
zaporedje stopenj vozlišč kot njihovi komplementi. V skladu s tem sta postavila domnevo

Domneva 1. Če ima grafG lastnost pG(k) = pG(k), potem imataG inG enako zaporedje stopenj
vozlišč.

V naši disertaciji pokažemo, da velja naslednji rezultat.

Izrek 4.5.7. Obstaja neskončna družina grafov, ki imajo enak kromatičen polinom kot njihovi
komplementi,vendar se razlikujejo v zaporedju stopenj vozlišč.
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Pozornost nato usmerimo na posplošitev kromatičnega polinoma—Tuttov polinom TG(x, y).
Za dano podmnožico F ⊆ E(G) označimo z c(F ) število povezanih komponent grafa (V (G), F ).
S to definicijo v mislih je Tuttov polinom definiran kot

TG(x, y) =
∑

F⊆E(G)
(x− 1)c(F )−c(E) · (y − 1)c(F )+|F |−|V (G)| . (4.3)

Da je slednje zares posplošitev omenjenega problema, vidimo iz znane zveze

pG(k) = (−1)|V (G)|−k(E)kc(E)TG(1− k, 0) .

V nadaljevanju disertacije pokažemo naslednji rezultat.

Izrek 4.5.8. Obstaja neskončna družina grafov, ki niso sebi komplementarni, vendar imajo enak
Tuttov polinom kot njihovi komplementi.

Grafi iz predstavljene konstrukcije imajo lastnost, da se z osnovnim grafom ujemajo v zapo-
redju stopenj vozlišč, zato poglavje zaključimo z analognim problemom, ki je motiviral osnovno
poglavje.

Problem 7. Ali obstaja graf G, ki ima enak Tuttov polinom kot njegov komplement, vendar nima
enakega zaporedja stopenj vozlišč?

Krepko regularni grafi

Za k-regularen graf z v vozlišči pravimo, da je krepko regularen s parametri (v, k, λ, µ), če ima
vsak par sosednjih vozlišč natanko λ skupnih sosedov, par nesosednih vozlišč pa natanko µ skupnih
sosedov. Kot dodatno predpostavko zahtevamo, da so krepko regularni grafa diametra 2. Družina
krepko regularnih grafov se pojavlja na veliko področjih teorije grafov, najbolj znana je njihova
povezava z problemom izomorfizma ter njihova vloga v teoriji razdaljno regularnih grafov.

Primer 4.5.2. Najmanjši primer krepko regularnega grafa je cikelC5, ki ima parametre (5, 2, 0, 1).
Naslednji naraven primer je Petersenov graf s parametri (10, 3, 0, 1). Predstavljena grafa spadata v
družino tako imenovanihMoorovih grafov. To so krepko regularni grafi s parametri (k2+1, k, 0, 1).

Primer 4.5.3. Za krepko regularen graf s parametri (v, k, λ, µ) se hitro pokaže, da je tudiG krepko
regularen graf in sicer s parametri (v, v − k − 1, v − 2− 2k + µ, v − 2k + λ).

Primer 4.5.4. Kartezični produkt polnega grafa Kn�Kn je prav tako krepko regularen graf s
parametri (n2, 2n− 2, n− 2, 2).

V disertaciji razvijemo nekaj osnovnih lastnosti krepko regularnih grafov. Med drugim pred-
stavimo njihovo ekstremalnost v smislu števila lastnih vrednosti. Znano je, da je edini graf, ki
ima natanko dve različni lastni vrednosti poln grafKn za n ≥ 2. Izkaže se, da so krepko regularni
grafi karakterizirani kot regularni grafi z natanko tremi različnimi lastnimi vrednostmi. Natančneje
lahko za lastne vrednosti krepko regularnih grafov povemo naslednji rezultat.

Trditev 4.5.9. Lastne vrednosti krepko regularnega grafa s parametri (v, k, λ, µ) so

k,
1
2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
in

1
2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
,
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pri čemer so

1, 1
2

[
(v − 1)− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
in

1
2

[
(v − 1) + 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]

ustrezne kratnosti.

S pomočjo trditve 4.5.9 z lahkoto izračunamo tudi lastne vrednosti razdaljne matrike krepko
regularnega grafa. Velja:

Trditev 4.5.10. Naj boG krepko regularen graf s parametri (v, k, λ, µ), Število ν je lastna vrednost
matrike AG natanko tedaj, ko je 2

µν
2 + (1− 2λ

µ )ν − 2k
µ lastna vrednost DG.

Naj bo n−(G), n+(G) število negativnih oziroma pozitivnih lastnih vrednosti matrike DG. V
nadaljevanju disertacije pokažemo:

Trditev 4.5.11. Obstaja neskončno mnogo povezanih grafov G, za katere je n+(G) > n−(G).

S slednjim smo odgovorili na vprašanje o obstoju takšnih grafov, postavljeno v [37]. V na-
daljevanju disertacije se osredotočimo na povezavo med Moorovimi grafi in grafi z maksimalnim
številom ciklov, katerih velikost je ožina grafa. Natančneje pokažemo:

Trditev 4.5.12. Naj bo G graf z n vozlišči, m povezavami in liho ožino g. Število g-ciklov v G je
največ n

g (m− n+ 1), enakost pa je dosežena, če in samo če je G cikel ali Moorov graf.

Zgornji rezultat naravno posplošimo v kontekst konveksnih ciklov. Za podgraf H grafa G
pravimo da je konveksen, če za vsak par x, y ∈ H velja, da je vsaka najkrajša pot med u in v v G
vsebovana v H . Konveksnemu podgrafu, ki je cikel, pravimo konveksni cikel. S slednjo notacijo
lahko zgornjo trditev posplošimo na naslednjo.

Trditev 4.5.13. Naj boG graf z n vozliščim povezavami in ožino g. Število konveksnih ciklov vG
je največ n

g (m− n+ 1),, enakost pa je dosežena, če in samo če, je G Moorov graf ali cikel.

Neobstoj (75, 32, 10, 16) krepko regularnega grafa

V tem razdelku opredelimo (ne)obstoj (75, 32, 10, 16) krepko regularnega grafa. Osnovna ideja
predstavljenega pristopa temelji na metodi zvezdnega komplementa, ki sta jo razvila Cvetković
in Rowlinson [26]. Naj bo G nek graf z lastno vrednostjo ψ, katere kratnost je k. Induciranemu
podgrafuH ⊆ G pravimo zvezdni komplement grafaG za lastno vrednostψ, čeψ ni lastna vrednost
H in ima H natanko |V (G)| − k vozlišč. Izkaže se, da takšen graf vedno obstaja.

Trditev 4.5.14. Naj bo G graf in ψ njegova lastna vrednost. Tedaj obstaja zvezdni komplement za
G in ψ.

Preden utemeljimo pomen zveznih komplementov, naj omenimo še naslednjo trditev, ki nam
omogoča zgraditi zvezdni komplement iz danega, manjšega grafa.

Trditev 4.5.15. Naj bo G graf z lastno vrednostjo ψ. Če je H ′ tak induciran podgraf grafa G, da
H ′ nima lastne vrednosti ψ, potem obstaja nek zvezdni komplementH zaG in ψ za katerega jeH ′
induciran podgraf v H .
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Glavna lastnost zvezdnih komplementov leži v dejstvu, da lahko z nekim zvezdnim komple-
mentom grafa G rekonstruiramo graf G. V nadaljevanju priredimo opisano trditev potrebam naše
disertacije, bralca pa usmerimo na [26] za bolj podrobne implikacije te metode.

Naj bo H zvezdni komplement za G in ψ. Definirajmo produkt

〈u, v〉 = u(ψI −AH)−1vt .

Primerjalni graf grafa H in lastne vrednosti ψ je graf Comp(H,ψ) z vozlišči

V (Comp(H,ψ)) = {u ∈ {0, 1}n−k | 〈u, u〉 = ψ and 〈u,−→1 〉 = −1}

katerega sosednost je definirana s pravilom

u ∼ v ⇐⇒ 〈u, v〉 ∈ {−1, 0} .

Naj v tej točki omenimo, da pogoj 〈u,−→1 〉 = −1 izhaja iz dejstva, da je v našem kontekstu G
regularen graf [67]. V splošnem omenjen pogoj ne velja.

Izkaže še, da se problem rekonstrukcije grafaG prevede na problemmaksimalne klike vComp.
Specifično je za naš problem pomembno naslednje dejstvo.

Trditev 4.5.16. Naj bo G nek graf z lastno vrednostjo ψ kratnosti k ter H ustrezen zvezdni kom-
plement. Tedaj ima graf Comp(H,ψ) kliko velikosti k.

Problem določanja obstoja (75, 32, 10, 16) krepko regularnega grafa se torej prevede na nasle-
dnje. Po trditvi 4.5.9 vemo, da ima takšen graf lastno vrednost 2 kratnosti 56. Naj bo H nek graf
z 19 vozlišči, ki nima 2 za lastno vrednost. Če je ω(Comp(H, 2)) < 56, potem H ni induciran
podgraf v X . Problem določanja obstoja X se torej reducira na iskanje seznama grafov L, tako
da je vsaj en izmed elementov L induciran podgraf v X , hkrati pa so vsi grafi v L reda 19 in ne
vsebujejo 2 za lastno vrednost. Če za vsak graf iz L pokažemo, da ω(Comp) < 56, potem X ne
obstaja.

Ključnega pomena pri naslednjem pristopu je generiranje majhnega seznama L z opisano la-
stnostjo. V ta namen uporabimo princip prepletanja opisan v uvodnem poglavju. Drugi problem,
ki se pojavi v tem kontekstu, je računanje velikosti maksimalne klike danega grafa G. Učinkovit
algoritem za ta problem ni znan, hkrati pa so v praksi primerjalni grafi zelo veliki in gosti. Da bi se
izognili omenjeni problematiki, je ključna uporaba simetrij grafov. Osnoven razveji in omeji pri-
stopza iskanje maksimalne klike v grafu temelji na naslednji ideji. Če je v ∈ V (G), potem bodisi
v leži na neki maksimalni kliki ali v G ali ne. V slednjem primeru je maksimalna klika grafa G
enaka maksimalni kliki v grafu G− v. Z drugimi besedami, za vsak graf G reda vsaj 2 velja

ω(G) = max(ω(G− v), ω(G[N(v)])) + 1) . (4.4)

Če je o(v) orbita vozlišča v glede na Aut(G), potem lahko enačbo (4.4) zapišemo kot

ω(G) = max(ω(G− o), ω(G[N(v)])) + 1) . (4.5)

V primeru da ima G veliko simetrij, predstavlja to znatno redukcijo iskalnega prostora. To idejo
lahko še posplošimo, saj je pogoj, ki ga orbite vozlišč predstavljajo ta, da je G[N(v)] ∼= G[N(u)]
vsakič, ko pripadata u in v isti orbiti. Na osnovi te ideje smo zasnovali in implementirali algoritem
gtc za iskanje klik. Slednji je bil ključen korak pri reševanju problema obstoja krepko regularnega
grafa s parametri (75, 32, 10, 16). S pomočjo omenjenega algoritma v disertaciji pokažemo, da:
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Izrek 4.5.17. Krepko regularen graf s parametri (75, 32, 10, 16) ne obstaja.

Kot posledico zgornjega izreka dobimo tudi

Izrek 4.5.18. Krepko regularen graf s parametri (76, 35, 18, 14) ne obstaja.

Z orodji razvitimi v disertaciji verjamemo, da se bo dalo odgovoriti tudi na vprašanje obstoja
nekaterih drugih krepko regularnih grafov.
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