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Abstract

This work is an attempt to establish a stronger link between mathematics and chemistry
and also to introduce discrete structures, e.g.maps, into the field of mathematical chemistry.

We present the Hückel Molecular-Orbital theory and focus our attention to the notion
of free valence. It is assumed in the literature that the maximum π bond number (i.e.,
the total π bond order around a sp2 carbon atom) that can be theoretically obtained (on
any centre in any sp2 π system) is no larger than

√
3. This statement does not appear to

have been formally proved. We obtained some partial results. We also provide empirical
evidence on the behaviour of maximum π bond number as a function of vertex count, n, of
chemical graphs and describe the family of graphs that realises local maxima for small n.

In 2013, a group of scientists led by Roman Jerala successfully designed a self-assembled
tetrahedral polypeptide. We describe a suitable mathematical model for self-assembly of
polypeptide structures. We also provide a dynamic programming algorithm for enumeration
of strong traces, i.e., double traces of a graph that have additional properties.

In 2012 the interesting family of convex benzenoids was introduced by Cruz et al. We
present several equivalent definitions of convex benzenoids and explain some of their prop-
erties. In OEIS the sequence A116513 by A. C. Wechsler represents their enumeration.
S. Reynolds enumerated and listed them all up to 250 hexagons. Our study independently
verifies their enumeration. Furthermore, we stratify their generation into what we call the
fundamental families of convex benzenoids. We provide an algorithm which extends the
table up to 106 hexagons.

In this work we also revisit coronoids, in particular multiple coronoids. We consider a
mathematical formalisation of the theory of coronoid hydrocarbons that is solely based on
incidence between hexagons of the infinite hexagonal grid in the plane.

We also consider perforated patches, which generalise coronoids: in addition to the
hexagons of any benzenoid, other polygons may also be present. Just as coronoids may be
considered as benzenoids with holes, perforated patches are patches with holes. Both cases,
coronoids and perforated patches, admit a generalisation of the altan operation that can be
performed at several holes simultaneously. A formula for the number of Kekulé structures
of a generalised altan can be derived easily if the number of Kekulé structures is known for
the original graph. Pauling Bond Orders for generalised altans are also easy to derive from
those of the original graph.

Math. Subj. Class. (2010): 92E10, 05C10, 05C90.

Keywords: altan, generalised altan, iterated altan, benzenoid, coronoid, patch, perforated
patch, Kekulé structure, Pauling Bond Order, Pentagonal Incidence Partition, map trace.
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Povzetek

To delo je poskus vzpostavitve krepkejše povezave med matematiko in kemijo. Polega tega
poskušamo diskretne strukture, kot so npr. zemljevidi, uveljaviti v matematični kemiji.

Najprej predstavimo Hücklovo teorijo molekulskih orbital, posebno pozornost pa na-
menimo konceptu proste valence. V literaturi je pogosto predpostavljeno, da je največje π
vezno število (tj. skupna vsota redov π vezi, ki izhajajo iz nekega sp2 ogljikovega atoma), ki
ga je mogoče teoretično doseči (pri poljubnem atomu v poljubnem sp2 π sistemu), največ√

3. Vendar vse kaže, da ni bila ta domneva nikoli formalno dokazana. V tem delu smo us-
peli dobiti nekatere delne rezultate. Poleg tega postrežemo z izračuni obnašanja π veznega
števila kot funkcije števila atomov n v družini kemijskih grafov in opišemo družino grafov,
ki dosežejo lokalne maksimume za manjše vrednosti parametra n.

Leta 2013 je skupina znanstvenikov pod vodstvom Romana Jerale uspešno izdelala
samosestavljiv polipeptid, ki se je zložil v tetraeder. Najprej podamo matematični model,
ki je primeren za opis samosestavljanja. Nato predstavimo algoritem, ki s pomočjo di-
namičnega programiranja našteje krepke obhode, tj. dvojne obhode, ki imajo še neke dodatne
lastnosti.

Leta 2012 so Cruz in sodelavci uvedli zanimivo družino konveksnih benzenoidov. V tem
delu predstavimo več ekvivalentnih definicij konveksnih benzenoidov in nekatere njihove
lastnosti. V enciklopediji OEIS zaporedje z oznako A116513, ki ga je definiral A. C. Wech-
sler, predstavlja njihovo enumeracijo. S. Reynolds je preštel in poiskal vse primerke, ki
imajo največ 250 šestkotnikov. Naša študija neodvisno potrdi pravilnost njihove enu-
meracije. Konveksne benzenoide razdelimo v tako imenovane fundamentalne družine, ge-
neriranje pa opravimo v vsaki družini posebej. S takšnim pristopom z lahkoto preštejemo
vse konveksne benzenoide, ki imajo do 106 šestkotnikov.

V tem delu se posvetimo tudi koronoidom, še posebej večkratnim koronoidom. Pred-
stavimo matematično formalizacijo teorije koronoidnih ogljikovodikov, ki temelji zgolj na
sosednosti med šestkotniki neskončne šestkotniške mreže v ravnini.

Nekaj pozornosti namenimo še naluknjanim obližem, ki posplošijo koronoide. Poleg
šestkotniških smejo imeti tudi lica drugačnih dolžin. Tako kot lahko koronoide obravnavamo
kot benzenoide z luknjami, lahko tudi naluknjane obliže obravnavamo kot obliže z luknjami.
Na enih in na drugih lahko naredimo posplošeno operacijo altan, ki poteka na več luknjah
hkrati. Izpeljemo formulo, ki prešteje Kekulejeve strukture posplošenega altana, če je število
Kekulejevih struktur originalnega grafa že znano. Tudi Paulingov red vezi lahko enostavno
izračunamo za altan, če že od prej poznamo njihove vrednosti v osnovnem grafu.

Math. Subj. Class. (2010): 92E10, 05C10, 05C90.

Ključne besede: altan, posplošeni altan, iterirani altan, benzenoid, koronoid, obliž,
naluknjan obliž, Kekulejeva struktura, Paulingov red vezi, petkotniška incidenčna parti-
cija, obhod zemljevida.
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Chapter 1

Introduction

Recent work in mathematical chemistry has developed various tools for analysis of various
physical properties and effects of importance in physical chemistry and molecular physics.
Recent developments have drawn attention from mathematicians working in applications
of linear algebra in graph theory [143, 144]. On the other hand, several tools from algebraic
and topological graph theory have been shown to be suitable for construction, description
and analysis of carbon-based structures, such as hexagonal systems [102, 52] and fullerenes
[70, 186]. In this work, we treat several problems in mathematical chemistry from a math-
ematical point of view. We also present several chemical concepts that establish a stronger
link between mathematics and chemistry. Among various families of molecular graphs,
hexagonal systems will be given special attention.

Chapter 2 is a preliminary chapter in which we define several mathematical objects that
are needed to follow the thesis. In addition to graphs, we also present polygonal surfaces
and maps which are used in Section 3.5 and in Chapters 5 and 6. Section 2.4 is devoted
to point groups. We describe the Schönflies notation that is normally used by chemists.
Section 2.6 is an overview of results from spectral graph theory which play an important
role in the Hückel Molecular-Orbital theory presented in Section 3.2. We define important
concepts such as atomic charge, bond order and free valence.

Chapter 3 introduces various chemical concepts via graph theory. It is aimed at math-
ematicians to give them better understanding of the chemistry that lies behind the math-
ematical problems which we consider in this work. Chapter 3.1 describes the basics of
chamical bonding. In Chapter 3.2 we start off with the Schrödinger wave equation and
make a series of approximations that lead us to the Hückel theory. This is the simplest
quantum-chemical theory of unsaturated systems that still gives meaningful results. We
show that Hückel theory is strongly linked to linear algebra. Section 3.3 introduces fullerene
graphs which are an important class of chemical graphs. They are used to model fullerenes,
i.e., allotropes of carbon that are composed of closed-cage molecules that contain only
pentagonal and hexagonal rings. Here, we introduce the Pentagonal Incidence Partition
which is a refinement of the concept of IPR fullerenes. We also briefly consider symmetries
of fullerenes. In Chapter 3.4 we treat Kekulé structures, i.e., valence-bond structures on
conjugated hydrocarbons in which every C atom is involved in a double bond. A Kekulé
structure is a synonym for perfect matchings. The theory of matchings in graphs has been

1



2 CHAPTER 1. INTRODUCTION

widely studied in the past. We describe algorithms that can determine in polynomial time
whether a graph has a perfect matching. Determinants are essential tools in linear alge-
bra. They also turn out to be important for counting the perfect matchings. We also
describe a polynomial-time algorithm for counting the perfect matchings in planar graphs,
e.g. fullerenes and coronoids. This algorithm is based on the Kasteleyn’s Theorem. In
Section 3.4.3 we briefly consider the conjugated-circuit approach to π-electron currents.

Section 3.5 is devoted to polyhedral self-assembly. In 2013, a group of scientists led by
Roman Jerala successfully designed a self-assembled tetrahedral polypeptide. We describe
a suitable mathematical model for self-assembly of polypeptide structures. Fijavž, Pisanski
and Rus defined an important notion of strong traces. Those object are of great importance
to biochemists, because they tell them how to arrange the peptides on the polypeptide
chain to obtain the desired self-assembled structure. A dynamic programming algorithm
for enumeration of map traces (which are closely related to strong traces) is introduced.

In Chapter 4 we investigate the Coulson conjecture on maximal bond order. This long-
standing conjecture effectively claims that the maximum π bond number in any subcubic
graph is no larger than

√
3. We provide some partial results and some empirical evidence on

the behaviour of maximum π bond number. Moreover, we describe the family of chemical
graphs that realises local maxima for graphs on small number of vertices. We also provide
results on computer searches within fullerenes and benzenoids.

Chapter 5 treats hexagonal systems and their generelisations. We describe a new ap-
proach to hexagonal systems that is solely based on incidences between hexagons of the
infinite hexagonal grid. We describe an algorithm which finds an embedding of a coronoid
in the infinite hexagonal grid (or decides that there is no such embedding). We also define a
description of benzenoids via their boundary-edges code that was popularised by Hansen et
al. Recently, a special family of convex benzenoids was studied by Gutman et al. [47, 102].
We provide several equivalent definitions of a convex benzenoid and give rigorous proofs
of their equivalence. We also investigate the enumeration problem of convex benzenoids.
We introduce the families of infinite benzenoids and infinite convex benzenoids. We show
that the former has uncountably many members, whilst, the latter has only countably many
members. Kekulé structure of several families of benzenoids are also considered. We de-
scribe tools for determining the existence of a Kekulé structure in a given benzenoid.

In Chapter 6, we shift attention from benzenoids to the more general subcubic planar
graphs that we called patches, which generalise the fullerene patches of Graver et al. A
mathematical formalisation which is based on the treatment of benzenoids and coronoids
in Chapter 5.4 is given here. We generalise coronoids to perforated patches, i.e., to patches
with several disjoint holes.

Chapter 7 is devoted to a class of graphs called altans. We study iterated altans and show
their connections with nanotubes and nanocaps. The term ‘altan’ was recently coined [148]
to describe a particular type of conjugated π-system, defined by a notional expansion of the
annulene-like perimeter of a parent hydrocarbon. Mathematical formalisation [99, 100] gives
an operation that can be applied to any planar graph to produce the altan of the parent
graph, and to predict consequent changes in various properties of mathematical/chemical
interest. We also apply successive altan operations, not to a single perimeter (or peripheral
root), but to a collection of disjoint perimeters. In particular, a composite operation of this
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type applies well to general coronoids, which, unlike benzenoids, may possess more than
one perimeter. In addition to the outer perimeter they have a perimeter for each of the
holes. We call this operation a generalised altan. Owing to its generality it applies to single
coronoids, i.e., to coronoids possessing exactly one corona hole, and multiple coronoids, i.e.,
coronoids possessing more than one corona hole. It seems that in the past investigations of
coronoids mostly single coronoids were considered. We also consider Kekulé structures of
generalised altans. It turns out to be easy to determine the number of Kekulé structures
of a generalised altan, if the number of Kekulé structures are known for the original graph.

The central theme of the dissertation is the development of various tools described
above and their applications in practice. An important part of the investigation is focused
on automatic computation of geometric, topological and algebraic parameters from pure
combinatorial descriptions of molecular graphs. In this respect, concise descriptions of
graph families are crucial ingredients. Consultation with chemists help to ensure relevance
to applications and dissemination of the results to the user community.
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Chapter 2

Preliminaries

In this short chapter, in order to keep this work self-contained, we will define the basic
mathematical objects that will be needed to follow the thesis. A self-confident reader may
skip this chapter and use it as a reference should the need arise.

2.1 Graphs and pregraphs
Traditionally, a graph is defined as a pair G = (V,E), where V is the set of vertices and E
is a subset of

(
V
2

)
, i.e., E is a collection of (unordered) pairs of vertices. Elements of E are

called edges. The cardinality of V (G) is called the order of graph G and the cardinality of
E(G) is called the size of graph G. Occasionally, we will need more general objects called
pregraphs.

Definition 2.1. A pregraph G is a quadruple G = (V, S, i, r) where V is the set of vertices,
S is the set of semiedges (also known as darts), i : S → V is a mapping that assigns the
initial vertex to each semiedge, and r : S → S is an involution which we call the reversal
involution.

Let s be a semiedge. Then e = {s, r(s)} is an edge. It is called a proper edge if |e| = 2 and
a half edge if |e| = 1. If the involution r has no fixed points, then G has no half edges and is
called a graph. Elements of {i(s), i(r(s))} are the end vertices of edge e. Note that graphs
defined in this way also allow parallel edges (edges with the same set of end vertices) and
loops (edges with only one end vertex). A graph without loops or parallel edges is a simple
graph.

Degree of a vertex v in a pregraph G is defined as

degG(v) := |i−1(v)| = |{s ∈ S | i(s) = v}|. (2.1)

When the pregraph under consideration is clear from the context, we simply write deg(v).
Note that ∑

v∈V (G)
deg(v) = |S(G)|. (2.2)

When G is a graph, we can write the above equation as ∑v∈V (G) deg(v) = 2|E(G)|. This
equality is known as the handshaking lemma. A vertex of degree 0 is called an isolated

5



6 CHAPTER 2. PRELIMINARIES

vertex . Let δ(G), d(G) and ∆(G) denote the minimum, average and the maximum degree
in G, respectively. A graph is called regular of degree k, or simply k-regular , when every
vertex has degree k. A cubic graph is a synonym for a 3-regular graph. If ∆(G) ≤ 3 then
G is called a subcubic graph.

Example 2.1. Let V = {v1, v2, v3} and S = {s1, s2, . . . , s9} for the pregraph P . Mappings
i and r are given in the Table 2.1. The drawing of pregraph P is shown in Figure 2.1. The

s s1 s2 s3 s4 s5 s6 s7 s8 s9
i(s) v1 v3 v2 v2 v2 v3 v1 v1 v3
r(s) s8 s5 s6 s7 s2 s3 s4 s1 s9

Table 2.1: Initial vertex map and the reversal involution for pregraph P .

v1

v2

v3
s8s1

s5

s2
s9

s3

s6s4

s7

Figure 2.1: Pregraph P

edge {s9} is a half edge, whilst all other edges are proper; {s2, s5} and {s3, s6} are parallel
edges and {s1, s8} is a loop.

If vertices u and v of a graph G are connected by an edge e = uv, we say that u and v
are adjacent and their adjacency relationship is denoted by u ∼ v. The set of all vertices
that are adjacent to a given vertex u is called the neighbourhood of u, denoted G(u), i.e.,
G(u) = {v ∈ V (G) | v ∼ u}. A walk of length k in a graph G is a sequence

W = v0 e0 v1 e1 . . . vk−1 ek−1 vk, (2.3)

where vi ∈ V (G) and ei ∈ E(G) such that ei = vivi+1. If graph G is simple then the
walk is uniquely determined by a sequence of vertices v0 v1 . . . vk−1 vk (if vi ∼ vi+1 then
there exists exactly one edge ei such that ei = vivi+1). If vertices of a walk W are pairwise
distinct then W is called a (v0, vk)-path in G (or just path). If all vertices of W are pairwise
distinct except for v0 = vk then W is called a cycle (of length k) in G.

Let G and H be two graphs. Graph H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆
V (G) and E(H) ⊆ E(G). By G− u we denote the subgraph obtained from G by removing
vertex u together with its incident edges. If S ⊆ V (G) then G − S denotes the subgraph
that is obtained from G by removing all vertices in S. If e ∈ E(G) then G− e denotes the
subgraph obtained from G by removing the edge e. If F ⊆ E(G) then G− F denotes the
subgraph that is obtained from G by removing all edges in F . A subgraph H of a graph
G is an induced subgraph if E(H) = E(G) ∩

(
V (H)

2

)
, i.e., if it contains all those edges of G
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that have both end vertices in V (H). A subgraph H of a graph G is a spanning subgraph
if V (H) = V (G).

If e = uv is an edge of the graph G then G/e denotes the graph which is obtained from
G by removing the edge e and identifying vertices u and v. This operation is called an
edge contraction. Let F ⊆ E(G). Then G/F denotes the graph that is obtained from G by
consecutively contracting edges in F .

The distance between vertices u and v of a graph G, denoted dG(u, v), is the length of
the shortest (u, v)-path. A graph G is connected if there exists a path between every pair
of vertices; otherwise it is called disconnected. A subset S ⊆ V (G) is a separating set if
G− S is disconnected. The connectivity of G, denoted κ(G), is the minimum size of some
S ⊆ V (G) such that G − S is disconnected or a single vertex. A graph G is k-connected
if k ≤ κ(G). The diameter of a connected graph G, denoted diam(G), is the maximum
distance between two vertices of G, i.e.,

diam(G) = max
u∈V (G)

max
v∈V (G)

dG(u, v). (2.4)

The girth of a graph G, denoted girth(G), is the length of the shortest cycle in the graph
G. If the graph G is acyclic (i.e., it has no cycles) then its girth is defined to be infinity.

A complete graph, Kn, is a graph on n vertices such that E(Kn) =
(
V (Kn)

2

)
, i.e., every two

vertices are connected by an edge. A path graph, Pn, is a graph with V (Pn) = {1, 2, . . . , n}
and E(Pn) = {{i, i + 1} | i = 1, . . . , n − 1}. A cycle graph, Cn, is a graph with V (Cn) =
{0, 1, . . . , n − 1} and E(Pn) = {{i, i + 1} | i = 0, . . . , n − 1} where the arithmetic is done
modulo n.

An automorphism of a pregraph is a pair of bijections (ϕ : V → V, ψ : S → S) such
that i(ψ(s)) = ϕ(i(s)) and r(ψ(s)) = ψ(r(s)) for each s ∈ S. Note that if (ψ, ϕ) and
(ψ′, ϕ′) are two automorphisms then (ψ ◦ψ′, ϕ ◦ϕ′) is also an automorphism. The set of all
automorphisms together with above composition is a group. It is called the automorphism
group (also called the full automorphism group) of pregraph G and is denoted by Aut(G).
In the case of simple graphs, mapping ψ is redundant and the automorphism is determined
by the permutation ϕ on V . Let G = (V,E) and G′ = (V ′, E ′) be two graphs. If there exists
a bijection ϕ : V (G)→ V (G′), such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(G′), then
graphs G and G′ are said to be isomorphic, denoted G ∼= G′, and ϕ is a graph isomorphism.
When G = G′, each isomorphism is an automorphism of graph G. Most of the time, the
labeling of vertices is not important and therefore we do not make distinction between
isomorphic graphs.

A directed graph or a digraph is a graph where the edges have a direction associated with
them. Directed edges are more commonly called arcs. They are ordered pairs of vertices.
This means that (u, v) 6= (v, u) if u and v are two distinct vertices of G.

Ocassionally, we need the notion of an empty graph, i.e., the graph whose set of vertices
is the empty set.

2.1.1 Trees and bipartite graphs
Definition 2.2. A graph G is bipartite if its vertex set can be partitioned V (G) = V1 t V2
such that for every edge e ∈ E(G) one of its end vertices belongs to V1 and the other belongs
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to V2.

In the above expression t stands for disjoint union and V1 t V2 is called the bipartition
of the vertex set V (G). In Section 2.6, we will see that bipartite graphs have certain nice
properties. Coronoid graphs, which will be the centre of our attention in Chapter 5, are
also bipartite. The following characterisation of bipartite graphs was proved by König:

Theorem 2.1 (Theorem 1.2.3 in [145]). A graph is bipartite if and only if it contains no
cycle of odd length. �

Definition 2.3. A forest is an acyclic graph (i.e., a graph without any cycles). A connected
forest is called a tree.

Trees are among the most important classes of graphs in discrete mathematics, chemistry
and computer science. Note that every tree is bipartite (by Theorem 2.1). The following
characterisation of trees can be found in almost any reference on graph theory:

Proposition 2.2 (Proposition 1.2.1 in [145]). Let G be a graph on n vertices. Then the
following statements are equivalent:
(i) G is a tree.
(ii) G is connected and has n− 1 edges.
(iii) G contains no cycles and has n− 1 edges.
(iv) G is connected, but G− e is disconnected for every e ∈ E(G).
(v) G has no cycles but addition of any edge results in a graph with a cycle.
(vi) Any two vertices of G are connected by exactly one path.

�

A leaf of a tree is a vertex of degree 1. Every tree with n ≥ 2 vertices has at least two
leaves. The path graph Pn, n ≥ 2, is a tree with exactly 2 leaves. If a tree with n ≥ 2
vertices has exactly 2 leaves then it is isomorphic to some path Pn. A caterpillar is a tree
for which identifying and removing all the leaves (together with incident edges) produces
a path graph. In other words, it is a tree in which there exists a path that contains every
vertex of degree two or more. An example is in Figure 2.2.

Figure 2.2: A caterpillar

The complete bipartite graph Kn,m is the graph with the maximum number of edges
among all bipartite graphs G such that |V1| = n and |V2| = m where V (G) = V1 t V2 is the
bipartition. Graph K1,n is called the star graph.

Complete bipartite graphs can be generalised naturally to complete multipartite graphs.
Complete multipartite graph Kn1,n2,...,ns , s ≥ 2, ni > 0 for 1 ≤ i ≤ s, is a graph on
n1 + n2 + · · · + ns vertices, where V (G) = V1 t V2 t · · · t Vs such that |Vi| = ni; vertices
u ∈ Vi and v ∈ Vj are adjacent if and only if i 6= j. If this notion is extended to s = 1 then
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Kn denotes a totally disconnected graph on n vertices. In our definition, we require s ≥ 2
and notation Kn is reserved for a complete graph on n vertices. (Also, note that K1,1 = K2,
K1,1,1 = K3, etc.)

A rooted tree is a tree in which one vertex has a “special status”. This special vertex is
called the root of the tree.

2.1.2 Generating small graphs
Libraries nauty and Traces [136, 158, 137] are the best known tools for determining the
automorphism group of a graph (or a digraph) and for testing graphs for isomorphism. They
are written in C and were developed respectively by Brendan D. McKay (nauty) and Adolfo
Piperno (Traces). Both libraries can be obtained from http://pallini.di.uniroma1.it/
free of charge.

The nauty library comes with a set of utilities called gtools. One of them is geng which
can generate non-isomorphic graphs very quickly. In principle, it generates all graphs for a
given number of vertices n. By using appropriate command-line options, it is possible to
set bounds for the number of edges, set bounds for the minimum and the maximum degree,
generate only connected graphs, etc. This means that geng can generate trees, connected
subcubic graphs and various other classes of graphs of interest to us.

2.1.3 Planar graphs
We usually draw figures of graphs in such way that vertices are represented by points and
each edge is represented by a line which connects the corresponding pair of points. A figure
of a graph is considered to be “nice” if no two lines (or just a few of them) intersect each
other. In this section we will give formal mathematical definition of a “drawing” of a graph
and present some basic results.

By a curve, we mean a continuous image of the unit interval [0, 1] into a topological
space X. A closed curve is a continuous image of circle S1 into the space X. A (closed)
curve is simple if it does not intersect or touch itself.

Theorem 2.3 (Jordan Curve Theorem, Theorem 10.1 in [19]). Any simple closed curve C
in the plane R2 partitions the plane into two disjoint path-connected open sets. �

A detailed treatment of the above theorem can be found in the paper by Thomassen [194].
Embedding of a graph G into the spaceX is given by an injective mapping ϕ : V (G)→ X

(that assigns a point in X to every vertex of the graph) and a family of continuous mappings
{ϕe : [0, 1]→ X | e ∈ E(G)} such that:
(i) for every e = uv ∈ E(G) we have {ϕ(u), ϕ(v)} = {ϕe(0), ϕe(1)};
(ii) ϕe|(0,1) is injective for every e ∈ E(G);
(iii) ϕe((0, 1)) and ϕe′((0, 1)) are disjoint if e 6= e′ (e, e′ ∈ E(G));
(iv) ϕe((0, 1)) and the set ϕ(V (G)) are disjoint for every e ∈ E(G).

Images of vertices and edges (subsets of X) are called points and lines, respectively. While
every graph can be embedded in the 3-dimensional space R3, this is not true for the plane
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R2. A graph that admits embedding in R2 is called a planar graph. Plainly speaking, a
graph is planar if its figure can be drawn on the paper in such a way that no two lines cross
each other. It is well-known that graphs K5 and K3,3 are nonplanar . A plane graph is a
planar graph together with a fixed embedding. Coronoid graphs, which we will consider in
Chapter 5, and fullerenes, which we will consider in Section 3.3, are plane graphs.

Let graph G be embedded in the plane R2. When the lines and points are removed, the
plane is divided into one or more connected components called the faces of the embedding.
Note that every face f is an open set and its boundary is a disjoint union of some points and
lines. The subgraph of G that corresponds to those points and lines is called the boundary
of face f . There is always precisely one unbounded face and the rest are bounded. The
unbounded face is called the outer face; the other faces are called inner faces. The set of all
faces will be denoted F (G). A vertex v ∈ V (G) is incident to a face f ∈ F (G) if v is in the
boundary of f . Similarly, an edge e ∈ E(G) is incident to a face f if e is in the boundary
of f . Two faces that share an edge are adjacent. If edge e lies on some cycle of G, then e
is incident with two faces; otherwise it is incident with exactly one face.

Proposition 2.4 (Proposition 4.2.6 in [61]). In a 2-connected plane graph G, the boundary
of every face is a cycle in G. �

The degree of a face f , denoted deg(f), is the number of edges in its boundary. If an edge
e is incident with only one face, then it contributes 2 to its degree. The following equality
is a “dual” analogue of the handshaking lemma:∑

f∈F (G)
deg(f) = 2|E(G)|. (2.5)

Theorem 2.5 (Theorem 10.4 in [19]). A graph G is embeddable on the plane if and only
if it is embeddable on the sphere. �

Theorem 2.5 can easily be proved using the stereographic projection. Sometimes, it is more
convenient to consider the embedding on the sphere. In the plane, the unbounded face has
a “special status”. On the sphere, every face is bounded, so none of them is distinguished
from the others. Using the stereographic projection and by rotating the sphere on which
the embedding resides one can easily obtain:

Corollary 2.6 (Proposition 10.5 in [19]). Let G be a planar graph and let f be a face in
some planar embedding of G. Then there exists an embedding where f is the outer face. �

A graph may also be embedded in other surfaces. Let Σ be a surface and G a graph. An
embedding of G in Σ is cellular if every face is homeomorphic to an open disc in R2. The
following theorem relates the number of vertices, edges and faces in a cellularly embedded
graph:

Theorem 2.7 (Euler’s Formula, [145]). Let G be a graph that is cellularly embedded in a
surface Σ. Then

|V (G)| − |E(G)|+ |F (G)| = χ(Σ), (2.6)
where χ(Σ) is the Euler characteristic of the surface Σ. �



2.1. GRAPHS AND PREGRAPHS 11

Euler characteristic χ is a topological invariant of the surface in which the graph is cellularly
embedded, i.e., homeomorphic surfaces have the same Euler characteristic. It is well known
that χ(S2) = 2 and the Euler formula for planar graph follows:

|V (G)| − |E(G)|+ |F (G)| = 2. (2.7)

Other topological types of surfaces will be considered in Section 2.2.
For convenience, let us give the embedding of a graph G into space X as a mapping

Φ: V (G)∪ (E(G)× [0, 1])→ X, such that Φ(v) = ϕ(v) for v ∈ V (G) and Φ(e, t) = ϕe(t) for
e ∈ E(G) and t ∈ [0, 1]. A plane graph can be treated as a pair (G,Φ), provided that X = R
or X = S2. Let Φ and Ψ be two embeddings of a planar graph G into S2. Embeddings Φ
and Ψ are topologically equivalent if there exists a homeomorphism µ : S2 → S2, such that
Φ = µ ◦Ψ.

Example 2.2. Figure 2.3 shows four embeddings of a graph in S2. Embeddings (c) and

(a) (b) (c) (d)

Figure 2.3: Four embeddings of a graph.

(d) are topologically equivalent. Embedding (a) is not topologically equivalent to any other
embedding in the figure. Embedding (b) is also not topologically equivalent to any other
in the figure. �

Let FΦ(G) and FΨ(G) denote the faces of plane graphs (G,Φ) and (G,Ψ), respectively. Let
ν : FΦ(G) → FΨ(G) be a bijection. Mapping ν is said to preserves vertex-face incidence
when v ∈ V (G) is incident with f ∈ FΦ(G) if and only if v is incident with ν(f). Similarly, ν
preserves the edge-face incidence when e ∈ E(G) is incident with f ∈ FΦ(G) if and only if e
is incident with ν(f). If there exists a bijection ν : FΦ(G)→ FΨ(G) that preserves incidence
of vertices and edges with faces then Φ and Ψ are called combinatorially equivalent.

Note that a homeomorphism of the sphere preserves incidence of vertices, edges and
faces. This means that two topologically equivalent embeddings are always combinatorially
equivalent.

Example 2.3. Figure 2.4 shows two embeddings of a graph that are combinatorially equiv-
alent, but not topologically equivalent. �

Theorem 2.8 (Theorem 4.3.1 in [61]). Let G be a 2-connected planar graph. Every two
embeddings of G that are combinatorially equivalent are also topologically equivalent. �

Theorem 2.8 tells us that the two notions of equivalence of planar graph coincide in the
class of 2-connected planar graphs.
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(a) (b)

Figure 2.4: Two combinatorially equivalent embeddings of a tree that are not topologically
equivalent.

Theorem 2.9 (Whitney’s Theorem, Theorem 4.3.2 in [61]). Any two planar embeddings
of a 3-connected graph are equivalent. �

Definition 2.4. Let G be a plane graph. The plane dual, denoted G∗, of G is a plane
graph that can be obtained in the following way: for every face f of G, place a new vertex
inside face f . Those new vertices are the vertices of the plane dual. For every edge e of
G, create an edge e∗ that connects the vertices of G∗ which correspond to the two faces that
are adjacent to e in G. If e is adjacent to only one face, create a loop at the corresponding
vertex. Edge e∗ is drawn in such a way that it crosses edge e exactly once.

Example 2.4. The graph Q3 in Figure 2.5 is skeleton of the 3-dimensional cube. Its plane
dual Q∗3 is skeleton of the octahedron. �

(a) Q3 (b) Q∗3

Figure 2.5: The cube Q3 and its plane dual Q∗3. In the drawing of Q∗3 one can also see the
silhouette of Q3 (drawn with light gray lines).

2.2 Polygonal surfaces and maps
Let {Pi}i∈I be a collection of polygons. The polygons do not need to be embedded in a
topological space. We may keep this at an abstract level and define polygonal complexes
in a purely combinatorial manner. The boundary of a polygon is a finite cyclic sequence of
edges. Two consecutive edges meet in a common vertex. The boundary of length n may
be viewed as a cycle graph Cn. Let us orient the (boundary) edges of polygons. We may
partition the set of all oriented edges of those polygons and identify those edges that belong
to the same block of the partition. In this way we obtain an (abstract) polygonal complex Π.
If all blocks of the partition are of size 2 and the complex is connected then this polygonal
complex is called a polygonal surface. If there are also blocks of size 1 in addition of those
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of size 2, this complex is called a polygonal surface with boundary. Polygons of a polygonal
complex are often called 2-cells or faces. The graph that is obtained from taking vertices
and edges of the polygonal complex is called its 1-skeleton. For more on this subject the
reader is referred to [162].

Example 2.5. Let there be a collection of 3 polygons with boundaries of lengths 5, 4 and 6
(see Figure 2.6(a)). Their edges are labeled with letters a, b, c, . . . , o. We oriented the edges
as indicated by arrows in Figure 2.6(a). The orientations which are not indicated in the
figure may be chosen arbitrarily. Let the partition of the oriented edges be such that {c, f}
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no

(a)
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(b)

Figure 2.6: A polygonal complex which is also a surface with boundary.

and {h, j} are two blocks of size 2 and all the other blocks are of size 1. When the edges
are identified, polygonal complex shown in Figure 2.6(b) is obtained. It has 11 vertices, 13
edges and 3 polygons (faces). �

The concept of polygonal surfaces is general enough to represent polyhedra, types of topo-
logical surfaces, infinite plane tilings and also cellular embeddings of graphs into surfaces.

Example 2.6. Figure 2.7 shows four different surfaces that can be obtained from a single
4-sided polygon by choosing appropriate edge labels and orientations. The sphere S is

b

b

a

a

(a) S

b

a

b

a

(b) T

b

a

b

a

(c) P

b

a

b

a

(d) K

Figure 2.7: Representation of surfaces with polygonal complexes.

shown in Figure 2.7(a). Surface T in Figure 2.7(b) is the torus. Surface P in Figure 2.7(c)
is called the projective plane and surface K in Figure 2.7(d) is called the Klein bottle. �

Suppose that we are given two polygonal surfaces Σ1 and Σ2, containing the polygons P1
and P2, respectively, such that P1 and P2 have the same number of boundary edges, say `,
and no two edges of P1 or P2 are matched. We can create a new polygonal surface, called
the connected sum of Σ1 and Σ2 with respect to P1 and P2, denoted Σ1 #P1,P2 Σ2, as follows.
Let us remove P1 from Σ1 (obtaining a polygonal surface with boundary) and traverse the
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boundary. While traversing the boundary, orient the edges in the direction of traversal
and label them by e1, e2, . . . , e`. Remove P2 from Σ2 and label its boundary in the same
way as in the case of Σ1. The two surfaces with boundary can be glued together along the
boundary with respect to the labels and orientations on the boundary edges. The surface
obtained in this way is Σ1 #P1,P2 Σ2. If we choose some other polygons P ′1 and P ′2 then we
may obtain a polygonal complex Σ1 #P ′1,P

′
2

Σ2 which is different from Σ1 #P1,P2 Σ2, but the
two surfaces are always homeomorphic. Most of the time we do not distinguish between
homeomorphic surfaces and therefore we write simply Σ1 # Σ2.

Let us define Σn := Σ # Σ # · · ·# Σ︸ ︷︷ ︸
n

and Σ0 := S. Note that S# Σ = Σ for every surface

Σ and that K = P #P and P #P #P = T #P . It is also easy to see that

χ(Σ1 # Σ2) = χ(Σ1) + χ(Σ2)− 2. (2.8)

It has been known for a long time that all topological types of closed surfaces can be
described as connected sums of S, T and P . Here is the famous classification theorem:

Theorem 2.10 (Classification of Surfaces, Theorem 4.6 in [162]). Every closed surface has
the topological type of one of the following:
(i) the sphere S;
(ii) a connected sum of n, n ≥ 1, tori T n;
(iii) a connected sum of n, n ≥ 1, projective planes Pn.

Moreover, χ(S) = 2, χ(T n) = 2− 2n and χ(Pn) = 2− n. �

The surfaces S and T n are orientable surfaces (two sided), whilst Pn is nonorientable (one
sided). Two surfaces are of the same type if and only if they have the same orientability
and the same Euler characteristic. For more on this subject consult the reference [145] or
reference [162].

There is another combinatorial description of surfaces with which it is sometimes more
natural to work. Imagine that in the centre of each polygon in Figure 2.6(b) we draw a
point and then draw lines from this point to vertices of the boundary and to midpoints of
boundary edges (see Figure 2.9(a)). If we cut the polygons (i.e., perform the barycentric
subdivision) along those lines we obtain flags. We can think of a flag as a right triangle
connecting a vertex, the midpoint of an edge and the centre of a face with its right angle at
the midpont of edge. A polygon of length n gives rise to 2n flags. A map can be formally
defined in the following way:

Definition 2.5. A map M is a quadruple M = (Φ, τ0, τ1, τ2), where Φ is the set of flags,
and τ0, τ1 and τ2 are three fixed-point-free involutions on Φ with the following two properties:

(i) τ0τ2 = τ2τ0 is fixed-point-free, and

(ii) the group 〈τ0, τ1, τ2〉 acts transitively on Φ.

The orbits V (M) of 〈τ1, τ2〉 are vertices, the orbits E(M) of 〈τ0, τ2〉 are edges and the
orbits F (M) of 〈τ0, τ1〉 are faces of the map M . We will denote the vertex, edge and face
that corresponds to flag φ ∈ Φ by vφ, eφ and fφ, respectively. We can therefore write
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V (M) = {vφ | φ ∈ Φ}, E(M) = {eφ | φ ∈ Φ} and F (M) = {fφ | φ ∈ Φ}. The pair
(V (M), E(M)) determines a graph which is called the 1-skeleton of map M and is denoted
by Skel(M). The map M represents the surface in which Skel(M) is cellularly embedded.
If there are no loops in Skel(M) or its dual, the map M is called flag-simple and each flag
can be uniquely identified by a triple (vφ, eφ, fφ).

The flag graph of mapM is an edge-coloured cubic graph whose set of vertices is the set
of flags Φ. The edge set is determined by the involutions τ0, τ1 and τ2. The edges induced
by τ0, τ1 and τ2 will be coloured green, red and blue, respectively. For more on the subject
of maps the reader is referred to references [162] and [164].

Example 2.7. Figure 2.8 shows flag graphs obtained from the polygonal complexes in
Example 2.6. �

(a) S (b) T (c) P (d) K

Figure 2.8: Flag graphs of surfaces from Example 2.6.

Example 2.8. Take the polygonal complex from Example 2.5. It represents a surface with
boundary which can be subdivided as shown in Figure 2.9(a). To describe surfaces with

(a) (b)

Figure 2.9: Barycentric subdivision and flag pregraph of polygonal complex from Exam-
ple 2.5.

boundary, one has to use flag pregraphs. Flags on the periphery are adjacant to just two
other flags; thus there are pendant blue half edges. The above definition of a map has to
be relaxed to allow fixed-points in involution τ2. �

Flag graphs were used in mathematical chemistry for the first time by Dress and Brinkmann
[63]. Later, they were also used by Balaban and Pisanski for describing benzenoids [159].
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2.3 Chemical graphs
The notion of a chemical graph is somewhat vague. In principle, this can be any graph that
has its use in chemistry. Molecular graphs are graph-based representations of molecules.
Graphs may not only represent molecules, but also chemical processes. In this work, we
will focus on certain families of molecular graphs.

Suppose a molecule contains n atoms labeled with integers 1, 2, . . . , n. In the simplest
possible model, there may be

(a) either a chemical bond between atoms i and j, or

(b) no chemical bond between atoms i and j.

When we model a molecule with a graph, so that each vertex represents an atom and edges
represent chemical bonds, we call such a graph the complete molecular graph.

Example 2.9. Figure 2.10 displays the structural formula of vitamin C (ascorbic acid) and
its complete molecular graph. Note that this graph contains a cycle of length 5. Another
example is ethanol (drinking alcohol) in Figure 2.11. Its complete molecular graph is a tree.

�

(a) Structural formula (b) Complete molecular graph

Figure 2.10: Vitamin C

(a) Structural formula (b) Complete molecular graph

Figure 2.11: Ethanol

Sometimes, only those atoms that form the framework of the molecule are considered, i.e.,
certain atoms (usually H atoms) are neglected. Such molecular graphs are called skeleton
graphs or depleted graphs. Skeleton graphs of fully conjugated systems are sometimes called
Hückel graphs. We will use them in Section 3.2 when discussing the Hückel theory.
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(a) Structural formula (b) Hydrogen-
depleted graph

Figure 2.12: Naphthalene

Example 2.10. Figure 2.12 displays the structural formula of naphthalene and its Hückel
graph, i.e., its hydrogen-depleted graph. However, this structural formula does not accu-
rately describe bonding in naphthalene molecule. �

In the simplest model that is described above, there is no distinction between different
elements (from the periodic table). Moreover, we assumed that there exists only one type
of chemical bond (two atoms are either bonded or they are not). This simple model may
be upgraded if necessary. We could assign additional information to vertices or edges (or
both). An edge-weighted graph is a graph G together with a function w : E(G)→ X, where
X is some set. (Edge-weighted digraphs are called networks.) The function w assigns to
every edge a value from X. Similarly, a vertex-weighted graph is a graph G together with a
function w : V (G)→ X. We could also use both vertex- and edge-weights to obtain graphs
with additional data on both vertices and edges. The edge weights can be numerical values
(e.g. X = R) which could represent bond strength or bond length. The vertex weights
could be natural numbers, i.e., X = N. In this case the mapping w could be used to assign
atomic numbers to vertices.

Some authors define chemical graphs as molecular graphs of fully conjugated π systems,
i.e., simple connected subcubic graphs. In this context, a chemical tree would be a subcubic
tree.

Numerous other types of graphs have been introduced in mathematical chemistry. Bal-
aban defined the characteristic (dualist) graph of a benzenoid system [9]. This graph is the
plane dual of the benzenoid graph (without the vertex that corresponds to the unbounded
face) in which the geometric information (i.e., angles between edges) is retained. Gutman
defined Gutman trees for non-branched catacondensed benzenoids [96]. A Gutman tree can
be used to obtain the sextet polynomial of its corresponding benzenoid. Clar graphs [98]
were also introduced by Gutman and they play an important role in the sextet theory of
Clar.

2.4 Molecular symmetry and point groups
One possible approach to the study of symmetries in molecules would be via symmetries
of their corresponding molecular graphs. Symmetries of a graph G are elements of its
automorphism group Aut(G). Automorphism groups of graphs are permutation groups.
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This is a widely studied class of groups [34]. However, a molecular graph only tells us which
atoms are bonded and which are not. Geometric information is completely disregarded.

We can take a different approach that takes the geometry into account. Let us represent
an atom by a pair (Ei,xi), where Ei is a chemical element (from the periodic table) and xi
is its position in R3. Then a molecule consisting of k atoms is represented by a set

M = {(E1,x1), (E2,x2), . . . , (Ek,xk)}. (2.9)

This set contains one element for each atom in the molecule. We also require that

|{x1, . . . ,xk}| = k, (2.10)

i.e., two different atoms can not reside in exactly the same position in space. With other
words, xi = xj implies i = j.

Example 2.11. Let us represent the molecule of methane, whose molecular formula is CH4
(see Figure 2.13):

MCH4 = {(C, (0, 0, 0)), (H, (0, 2
√

2
3 ,−1

3), (H, (
√

6
3 ,−

√
2

3 ,−
1
3)),

(H, (−
√

6
3 ,−

√
2

3 ,−
1
3)), (H, (0, 0, 1))}.

Figure 2.13: Methane

�

Let ϕ : R3 → R3 be an isometry of the 3-dimensional Euclidean space. Define

ϕ(M) := {(E1, ϕ(x1)), (E2, ϕ(x2)), . . . , (Ek, ϕ(xk))}. (2.11)

If ϕ(M) = M, we will say that ϕ is a symmetry operation on M. There may exist a
non-trivial element ϕ : R3 → R3 that fixes M element-wise. In other words, there may
exist two distinct isometries ϕ1, ϕ2 : R3 → R3 such that ϕ1(xi) = ϕ2(xi) for all i = 1, . . . , k.
Even if that happens, we still treat elements ϕ1 and ϕ2 as two distinct symmetry operations
onM. Instead of points, we could also use spheres (or balls) to represent atoms. In such
circumstances, because the identity is the only isometry that fixes a sphere pointwise, there
would be no doubt that the above ϕ1 and ϕ2 are indeed two distinct symmetry operations.
However, the use of spheres would be an unnecessary complication.
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The (unweighted) centroid ofM is a point in R3 defined as

c(M) := 1
k

(x1 + x2 + · · ·+ xk) . (2.12)

If ϕ(M) = M then ϕ must fix the centroid of the molecule, i.e., c(M) = c(ϕ(M)).
Therefore, we can assume that c(M) = (0, 0, 0) (the coordinate system can be repositioned)
and consider only those isometries of R3 that fix the origin of the coordinate system. It is
well known that those isometries comprise a group which is isomorphic to the orthogonal
group O(3). The group O(3) has been widely studied in the past. This group is isomorphic
to the group of real orthogonal 3× 3 matrices. The determinant of an orthogonal matrix is
either 1 or −1. The matrices of determinant 1 form an important subgroup of O(3) called
the special orthogonal group SO(3). Elements of SO(3) are sometimes called pure rotations.

Example 2.12. LetMCH4 be the representation of methane molecule as in Example 2.11.
Let

ϕ1 =

−
1
2 −

√
3

2 0√
3

2 −1
2 0

0 0 1

 and ϕ2 =

−1 0 0
0 −1 0
0 0 −1

 .
The reader can verify that ϕ1(MCH4) = MCH4 , whilst, ϕ2(MCH4) 6= MCH4 . This means
that ϕ1 is a symmetry operation onMCH4 , whilst ϕ2 is not.

Note that c(MCH4) = (0, 0, 0). �

We are therefore interested in the elements ϕ ∈ O(3) with the property that ϕ(M) =M.
It is clear that {ϕ ∈ O(3) | ϕ(M) =M} is a subgroup of O(3). It is the symmetry group
ofM. Those groups are often called point groups, because there is a point in the space (in
our case the origin of R3) that is fixed by every symmetry operation. We will describe the
Schönflies notation [184] which is a system of notation that is normally used by chemists
[77]. We have already formally defined a symmetry operation onM. Plainly speaking, it
is a movement of the molecule such that after it has been carried out, the molecule looks
exactly as it did in its original position. (If we looked away during this movement, we would
have not been able to tell whether it was actually performed or not.) Here, we will only
enumerate the possible types of symmetry groups of molecules and give some of their basic
properties. We will follow [39]. For an in-depth threatment of this subject the reader may
consult any of numerous references, such as [39, 45].

It turns out that only the following five types of symmetry operations need to be con-
sidered:

a) E – identity;
b) σ – reflection in a plane;
c) i – inversion through the centre (also called central inversion);
d) Cn – proper rotation (i.e., rotation about an axis);
e) Sn – improper rotation (i.e., rotation about an axis followed by reflection in the plane

perpendicular to the axis of rotation).
The symmetry element is a line, plane or point with respect to which one or more symmetry
operations may be carried out. We will briefly describe each of the operations. For each
of those operations we will also describe the associated symmetry element. All symmetry
elements will have at least one point in common – the centroid of the molecule.
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• Identity. This is the trivial operation that fixes the whole space R3, i.e., nothing is

moved. It is denoted E and is given by the

1 0 0
0 1 0
0 0 1

 matrix.

• Reflection. The symbol for this operation is σ. The symmetry element associated
with a reflection is the plane that is fixed by σ. For example, if we take as the
symmetry element the plane that is spanned by the x-axis and the y-axis then the

reflection associated with this symmetry element is given by the

1 0 0
0 1 0
0 0 −1

 matrix.

Note that any planar molecule has at least one plane of symmetry, i.e., its molecular
plane which is the plane that contains all of its atoms. Note that σ2 = E.

• Inversion. The symbol for this operation is i. The symmetry element associated
with the inversion is the point that is fixed by the operation (in our case the origin of

the coordinate system). It is given by the

−1 0 0
0 −1 0
0 0 −1

 matrix. Note that i2 = E.

• Proper rotation. Let n ∈ N and n ≥ 2. If there exists a line such that rotation
by 2π

n
about this line is a symmetry operation then this line is the symmetry element

called a proper axis (of rotation) or a n-fold axis. This operation is called a proper
rotation and is denoted Cn. It generates n symmetry operations:

Cn, C
2
n, C

3
n, . . . , C

n−1
n , Cn

n = E.

For example, the rotation by 2π
n

about the z-axis is given by the

cos 2π
n
− sin 2π

n
0

sin 2π
n

cos 2π
n

0
0 0 1


matrix.

• Improper rotation. Let n ∈ N and n ≥ 2. If there exists a line such that rotation
by 2π

n
about this line followed by a reflection in the plane perpendicular to this line is

a symmetry operation then this line is a symmetry element called an improper axis
(of rotation). This symmetry operation is called improper rotation and is denoted
Sn. In principle, there are infinitely many planes that are perpendicular to a line.
Because the operation has to fix the origin, the plane is uniquely determined (the

one that contains the origin). For example, the matrix

cos 2π
n
− sin 2π

n
0

sin 2π
n

cos 2π
n

0
0 0 −1

 gives

the improper rotation by 2π
n

about the z-axis. Note that Sn can be expressed as
Sn = Cnσh = σhCn where Cn is a proper rotation about the same axis and σh is the
plane that is perpendicular to this axis of rotation. It is easy to verify that Cn and

σh commute. Also, note that Snn = (Cnσh)n = Cn
nσ

n
h =

E if n is even;
σh if n is odd.
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The symmetry element will be denoted by the same symbol as used for its corresponding
symmetry operation. For example, the plane that corresponds to the operation σ will also
be denoted by σ.

The group O(3) has infinitely many subgroups. However, up to conjugacy in O(3),
the symmetry groups of molecules can be classified into several infinite families and some
sporadic cases. First, we will consider linear molecules, i.e., molecules whose atoms are
collinear.

If there is only one atom in the molecule then its symmetry group is the whole O(3). If
there are two or more atoms that are collinear then this line is an axis of rotation. Suppose
that the molecule is positioned in such a way that its axis of rotation coincides with the

z-axis. Then

cosα − sinα 0
sinα cosα 0

0 0 1

 is a symmetry operation for every α. Also, any plane

containing this axis of rotation is also a symmetry element (associated with the reflection
in that plane). There are two options to consider:

i) The molecule consists of two equivalent halves (e.g., carbon dioxide with formula
O––C––O). In this case there are infinitely many C2 axes (every line through the origin
that is perpendicular to the axis of rotation) and a horizontal plane of symmetry. This
group is designated D∞h.

ii) The molecule does not consist of two equivalent halves (e.g., hydrogen cyanide with
formula H–C–––N). Then there are no other operations in addition to those already
described. The group is called C∞v.

We use bold fonts for groups in order to avoid confusion with symmetry operations. There
exist other kinds of infinite point groups, but they can not appear as symmetry groups of
molecules (which have finitely many atoms).

Proposition 2.11. If the molecule has at least 3 non-collinear atoms then its symmetry
group must be finite.

Proof. LetM be a k-atom molecule with its atoms positioned at x1, . . . ,xk (see equation
(2.11)). We will show that there are finitely many symmetry operations onM. Let ϕ ∈ O(3)
be a symmetry operation on M, i.e., ϕ(M) = M. There exist two indices 1 ≤ i, j ≤ k,
i 6= j, such that vectors xi and xj are linearly independent. Without loss of generality,
we can assume that the two linearly independent vectors are labeled x1 and x2. By the
definition of a symmetry operation onM, there exist indices i1 and i2, 1 ≤ i1, i2 ≤ k, such
that ϕ(x1) = xi1 and ϕ(x2) = xi2 . There are only finitely many ways to choose i1 and
i2 (some of them may not be admissible). Because ϕ is a linear mapping, it is uniquely
determined on the plane that is spanned by x1 and x2. There are exactly two points in
R3 that are simultaneously at unit distance from the origin and at unit distance from the
plane spanned by x1 and x2. Let us denote the two points by y1 and y2. Note that y1
is linearly independent of x1 and x2. The mapping ϕ will be uniquely determined on the
whole space R3 by the image of y1. Because ϕ is an isometry, there are only two options:
either ϕ(y1) = y1 or ϕ(y1) = y2.
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The following groups can be generated by a single symmetry element:

• The simplest finite group is denoted C1. This is the trivial group (of order 1). This
means that the molecule is completely asymmetric.

• Cs is the group of order 2 that is generated by only one reflection σ. Ci is another
group of order 2 that is generated by the inversion i. (Algebraically, i.e., if we consider
them as abstract groups, both Cs and Ci are isomorphic. However, neither is the
conjugate of the other in O(3).) Researchers who are involved with abstract groups
would denoted them by Z2 (cyclic group of order 2).

• Cn, n ∈ N, n ≥ 2, is a group generated by a single proper axis of rotation Cn. This
group of order n would be denoted Zn in the abstract world.

• Sn, n ∈ N, is a group that is generated by a single improper axis of rotation. The
definiton of Sn implies that n must be even. (If n is odd then Snn = σh which gives
rise to another symmetry element.) Note that S2 is equivalent to i and in this case
the group is called Ci rather than S2. In the abstract world, this group of order n is
isomorphic to Zn.

Next, we consider groups where there is only one n-fold axis (proper or improper) where
n ≥ 3 and also other symmetry elements are present. The n-fold axis will be called the
principal axis:

• If in addition to a proper n-fold axis, Cn, there is also a 2-fold axis, C2, perpendicular
to Cn then there are n 2-fold axes. Operations Cn and C2 generate a group of order
2n denoted Dn, where n ∈ N, n ≥ 2. In abstract group theory, this group is called
the dihedral group and is denoted Dn (or Dihn).

In what follows, the z-axis will coincide with the principal axis. The plane perpendicular
to this axis will be denoted σh and called the horizontal plane whilst vertical planes (the
ones that include the princpal axis) will be denoted σv or σd.

• Cnh, n ∈ N, n ≥ 2, is a group of order 2n that is generated by Cn and σh. Note that
this group is abelian (Cn and σh commute). In abstract group theory, this is Zn×Z2
(direct product of two cyclic groups).

• Cnv, n ∈ N, n ≥ 2, is a group of order 2n that is generated by Cn and σv. If there is
one plane of symmetry that contains Cn, there must be n in total. If n is odd then
all of them belong to the same conjugacy class and these planes are denoted σv. If n
is even then there are two conjugacy classes of n

2 vertical planes. Planes of one of the
classes are denoted σv and planes of the other class are denoted σd. In the abstract
sense, this group is isomorphic to Dn.

• When we add a σh to the group Dn we obtain the group Dnh, n ∈ N, n ≥ 2, which
is of order 4n. Another way of obtaining Dnh is by adding σv to the group Cnh

(or adding σh to the group Cnv). In the abstract sense, this group is isomorphic to
Dn × Z2.
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• If we add a dihedral plane σd to the group Dn, we obtain a group of order 4n denoted
Dnd, n ∈ N, n ≥ 2. This dihedral plane contains the principal axis and dissects the
angle between two consecutive C2 axes. In the abstract group theory, this group is
isomorphic to D2n.

The Schönflies notation is rather unfortunate in the sense that n in Dnd or Cnv is a
natural number whereas d and v are just symbols. As this notation is well established and
widely used, we do not consider ourselves commissioned to change it.

If there is more than one high-order axis (high-order here means of order 3 or more).
There are only 7 such groups:

• Td is the full symmetry group of the tetrahedron. It is of order 24. Td has 5 conjugacy
classes:

– Element E, as always, is in its own class.
– There are three S4 axes of improper rotation passing through centres of non-

incident edges. They generate operations S4, S2
4 = C2 and S3

4 . Operations S4
and S3

4 are in the same conjugacy class which has 6 elements in total. The three
operations C2 comprise another conjugacy class.

– There are four C3 axes passing through apex and the center of the opposite face,
generating C3 and C2

3 operations that are both in the same conjugacy class which
has 8 elements in total.

– Finally, there are 6 planes of symmetry that include an edge and bisect the centre
of the opposite edge. Thus, there are 6 σd operations in the last conjugacy class.

The entire set of operations can be listed by conjugacy classes in the following way:

E, 8C3, 3C2, 6S4, 6σd.

• T is the pure rotational subgroup of Td, i.e., T = Td ∩ SO(3). It is of order 12 and
consists of the following 4 conjugacy classes: E, 4C3, 4C2

3 , 3C2. Note that C3 and C2
3

are in the same conjugacy class in Td, but not in T.

• Th is another group of order 24 that can be obtained from T by adding a set of planes
of symmetry σh which contain pairs of C2 axes. It has the following 8 conjugacy
classes: E, 4C3, 4C2

3 , 3C2, i, 4S6, 4S5
6 , 3σh.

• Oh is the full symmetry group of the octahedron (or cube). It is of order 48 and has
10 conjugacy class:

– As before, there is the identity element E in its own class.
– There are three S4 axes passing through opposite apices of the octahedron, gen-

erating S4, S2
4 = C2 and S3

4 . Operations S4 and S3
4 belong to the same conjugacy

class that has 6 elements in total. Operations C2 comprise a class with 3 ele-
ments.
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– There are three C4 axes that are collinear with the above S4 axes. They generate
operations C4, C2

4 = C2 and C3
4 . Operations C4 and C3

4 are in the same conjugacy
class that has 6 elements in total. The C2 operations were already generated
above by S4.

– There are 6 C ′2 axes bisecting opposite edges. Those 6 elements comprise another
conjugacy class. (They were denoted C ′2 to distinguish them from the above C2
operations.)

– There are four S6 axes passing through centres of opposite faces generating
operations S6, S2

6 = C3, S3
6 = i, S4

6 = C2
3 and S5

6 . Operations S6 and S5
6 are in

the same conjugacy class that has 8 elements in total. Similarly, C3 and C2
3 are

also in the same class that has 8 elements. Operation i is in its own conjugacy
class.

– Another class consists of three planes of symmetry σh passing through 4 coplanar
apices.

– Finally, there is a class with 6 planes of symmetry σd containing two opposite
apices and bisecting two opposite edges.

The entire set of operations by conjugacy classes is:

E, 6S4, 3C2, 6C4, 6C ′2, 8S6, 8C3, i, 3σh, 6σd.

• O is the pure rotational subgroup of Oh, i.e., O = Oh ∩ SO(3). It is of order 24 and
consists of the following 5 conjugacy classes: E, 3C2, 6C4, 6C ′2, 8C3.

• Ih is the full symmetry group of the dodecahedron (or icosahedron). It is of order 120
and its elements reside in 10 conjugacy classes:

– The identity E is in its own class.
– There are six S10 axes passing through centres of opposite faces of the dodecahe-

dron generating operations S10, S2
10 = C5, S3

10, S4
10 = C2

5 , S5
10 = i, S6

10 = C3
5 , S7

10,
S8

10 = C4
5 and S9

10. Operations S10 and S9
10 belong to the same class that has 12

elements. Similarly, S3
10 and S7

10 belong to the same class that has 12 elements
in total. Operations C2

5 and C3
5 belong to the same conjugacy class that also has

12 elements in total. Another such pair is C5 and C4
5 comprising a conjugacy

class with 12 elements. And the remaining operation i is in its own class.
– There are ten S6 axes passing through opposite pairs of vertices generating oper-

ations S6, S2
6 = C3, S3

6 = i, S4
6 = C2

3 and S5
6 . Operation i was already generated.

Operations S6 and S5
6 are in the same class which has 20 elements in total.

Similarly, operations C3 and C2
3 are in the same class which has 20 elements in

total.
– There are 15 C2 axes bisecting opposite edges and they constitute another con-

jugacy class.
– Finally, there are 15 planes of symmetry σ bisecting opposite edges that consti-

tute the last conjugacy class.
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(a) BF3 (b) NH3 (c) H3BO3 (d) C2H6

Figure 2.14: A few examples of molecules posessing symmetry.

The entire set of operations by conjugacy classes is:

E, 12S10, 12S3
10, 12C5, 12C2

5 , i, 20S6, 20C3, 15C2, 15σ.

• I is the pure rotational subgroup of Ih, i.e., I = Ih ∩ SO(3). It is of order 60 and
consists of the following 5 conjugacy classes: E, 12C5, 12C2

5 , 20C3, 15C2.

Example 2.13. The symmetry group of the methane molecule in Figure 2.13 is Td. We
have already seen that carbon dioxide (with structural formula O––C––O) has the symmetry
group D∞h. We have also seen that hydrogen cyanide (with structural formula H–C–––N)
has the symmetry group C∞v.

In Figure 2.14 there are some more examples. Boron trifluoride (with molecular formula
BF3) has the symmetry group D3h. Ammonia (with molecular formula NH3) has the
symmetry group C3v. Boric acid (with molecular formula H3BO3) has the symmetry group
C3h and ethane (with molecular formula C2H6) has the symmetry group D3d.

Pictures of molecules in Figure 2.14 were created in the Avogadro program which can
be obtained from http://avogadro.cc/ free of charge. �

In geometry, there is an important notion of chirality. Plainly speaking, a geometric
object is chiral (it has chirality) if it is not identical to its mirror image. This notion
can be formally defined in the language of symmetry groups. An object is achiral if its
symmetry group has at least one orientation-reversing isometry, otherwise it is chiral. In
other words, if G is the full symmetry group of an object then that object is chiral if and
only if G ∩ SO(3) = G. For example, you can not make your right hand look like your left
hand by only rotating your right hand, i.e., your hands are chiral. However, if you look at
your right hand in a mirror, it looks exactly like your left hand.

This has also considerable importance in chemistry. Back in the 50’s, a German phar-
maceutical company developed thalidomide (with molecular formula C13H10N2O4) which
was proclaimed the “wonder drug” for morning sickness and was as such issued to thou-
sands of women worldwide. It turned out that thalidomide prevented the proper growth
of the fetus, resulting in horrific birth defects such as malformed limbs [197]. Now, it is
known that thalidomide is chiral and has two enantiomers1, i.e., the (R)-thalidomide and

1According to the IUPAC “Gold Book” [138], an enantiomer is one of a pair of molecular entities which
are mirror images of each other and are not superimposable (i.e., one of a pair of chiral molecules).
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the (S)-thalidomide. The latter caused the severe side-effects. It interconverts in the human
body where both enantiomers are formed. This made the disaster inevitable [78].

2.5 Rotagraphs and fasciagraphs
In chemistry, a polymer is a large molecule composed of many small molecules called
monomers. This concept was applied to graph theory in order to define polygraphs which
are graphs composed of smaller building blocks referred to as monographs. It is no surprise
that polygraphs were used to describe polymers graph-theoretically [167].

LetG0, G1, . . . , Gn−1 be arbitrary graphs and letXi ⊆ V (Gi)×V (Gi+1) for i = 0, . . . , n−
1 (the indices are considered modulo n). Relations Xi represent edges connecting vertices of
Gi to vertices of Gi+1. A polygraph Ωn = Ωn(G0, . . . , Gn−1;X0, . . . , Xn−1) over monographs
G0, G1, . . . , Gn−1 is defined as follows:

V (Ωn) = V (G0) t V (G1) t · · · t V (Gn−1), (2.13)
E(Ωn) = E(G0) ∪X0 ∪ E(G1) ∪X1 ∪ · · · ∪ E(Gn−1) ∪Xn−1. (2.14)

Operator t in the above definition denotes the disjoint union. This means that even if
we take G0 = G1, two disjoint copies of this graph will be created when the polygraph is
formed. Of course, E(G0) and E(G1) will connect vertices from their corresponding copies
of the graph. For the above polygraph Ωn and for i = 0, 1, . . . , n− 1 we define:

Di = {u ∈ V (Gi) | ∃v ∈ V (Gi+1) : uv ∈ Xi}, (2.15)
Ri = {u ∈ V (Gi+1) | ∃v ∈ V (Gi) : vu ∈ Xi}. (2.16)

Now assume that G0 = G1 = . . . = Gn−1 and X0 = X1 = . . . = Xn−1. Let us
denote G := G0 = . . . = Gn−1 and X := X0 = . . . = Xn−1. Then the polygraph
Ωn(G0, . . . , Gn−1;X0, . . . , Xn−1) is called a rotagraph and is denoted ωn(G;X). The poly-
graph Ωn(G0, . . . , Gn−1;X0, . . . , Xn−2, ∅) is called a fasciagraph and is denoted γn(G;X). A
fasciagraph is very similar to a rotagraph, but is without edges between the first and the
last copy of the monograph. We may also write γn(G;X) ⊆ ωn(G;X).

Example 2.14. Let G = P4, i.e., a path on 4 vertices with V (P4) = {1, 2, 3, 4}, and let
X = {(1, 2), (4, 3)}. Graphs γ1 ∼= P4, γ2, γ3 and ω3 are shown in Figure 2.15. �
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(d) ω3

Figure 2.15: Examples of rota- and fasciagraphs
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Many more examples can be found in [165].
Results on various graph theoretical invariants of rota- and fasciagraphs were obtained

in the recent past. Klavžar and Žerovnik [122] proposed a general method based on path
algebras for solving various algorithmic questions about rota- and fasciagraphs. Babić,
Graovac, Mohar and Pisanski [7, 8] have developed a general method for determining the
matching polynomial of a polygraph that can be applied to calculation of other graph
invariants (topological indices) [54, 116, 121, 177].

2.6 Spectral graph theory
Spectral graph theory is a branch of mathematics that studies relations between properties
of graphs and spectra of their associated (adjacency) matrices. We will give some basic ter-
minology and results. Our main reference is the monograph [32] by Brouwer and Haemers.
Another good reference which is more application-oriented is the book [49] by Cvetković,
Doob and Sachs.

Let G be a simple graph with vertices labeled 1, 2, . . . , n. The adjacency matrix , denoted
A(G), is an n× n matrix indexed by the vertices of G where

Auv =

1, if u ∼ v;
0, otherwise.

(2.17)

The (ordinary) spectrum of a graph of a graph G, denoted σ(G), is the spectrum of
the adjacency matrix A(G), i.e., its set of eigenvalues together with their multiplicities. If
an eigenvalue has its multiplicity greater than 1 then it is called a degenerate eigenvalue;
otherwise it is called non-degenerate. The eigenvalues will be denoted by λi, 1 ≤ i ≤ n,
and ordered in non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λn. The i-th eigenvalue of graph G is
sometimes denoted λi(G). Graphs G and G′ are called cospectral if σ(G) = σ(G′).

Note that the spectrum does not change if we relabel the vertices of graph G. The
characteristic polynomial of G, denoted pG(λ), is the characteristic polynomial of A(G),
i.e.,

pG(λ) = det(λI − A(G)). (2.18)

Example 2.15. Let G be a graph on 6 vertices as shown in Figure 2.16. Let us determine

3 4
1

2

5

6

Figure 2.16: A connected graph on 6 vertices.
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its spectrum. Its adjacency matrix is

A(G) =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


. (2.19)

Its characteristic polynomial is then

pG(λ) = det(λI6×6 − A(G)) = λ6 − 7λ4 − 4λ3 + 11λ2 + 12λ+ 3
= (λ+ 1)2(λ−

√
3)(λ+

√
3)(λ− 1 +

√
2)(λ− 1−

√
2).

(2.20)

The spectrum of G is σ(G) = {−
√

3,−1,−1, 1−
√

2,
√

3, 1+
√

2}. Note that each component

√
2
√
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Figure 2.17: Eigenvalues and their corresponding eigenvectors.

of an eigenvector corresponds to a vertex of the graph. The eigenvectors that correspond
to eigenvalues determined above are shown in Figure 2.17. Note that the eigenvalue −1 has
multiplicity 2 and is therefore a degenerate eigenvalue. �

Let c be the eigenvector associated with the eigenvalue λ of a graph G. From A(G)c = λc
it follows that ∑

v∈G(u)
cv = λcu, (2.21)
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for every u ∈ V (G), i.e., if we consider a vertex u of the graph then its component in
the eigenvector, denoted cu, multiplied by the corresponding eigenvalue equals the sum of
components of neighbours of u. The reader can verify that this holds for the eigenvectors in
Figure 2.17. Sometimes, the easiest way to find the eigenvector is by finding the numbers
that satisfy the (2.21) rule.

As G is an undirected simple graph, A(G) is real and symmetric. Therefore, all its
eigenvalues are real. Since A(G) has zero diagonal,

tr(A(G)) =
n∑
i=1

λi(G) = 0. (2.22)

In equation (2.22), tr(A(G)) denotes the trace of the adjacency matrix of G.
The adjacency matrix of a k-regular graph has row sums equal to k, i.e., A(G)1 = k1,

where 1 is the all-ones vector. We see that k must be an eigenvalue of 1. The next
proposition tell us that a graph with a large diameter will have many distinct eigenvalues:

Proposition 2.12 (Proposition 1.3.3 in [32]). Let G be a connected graph with diameter
d. Then G has at least d+ 1 distinct eigenvalues. �

It is also possible to define spectra of directed graphs. The definition is similar to the
case of undirected graphs. As the adjacency matrix of a directed graph is not necessarily
symmetric, its eigenvalues are in general complex numbers.

The vertices of the bipartite graph can be labeled in such a way that V1 = {1, 2, . . . ,m}
and V2 = {m + 1,m + 2, . . . , n}, where V1 and V2 are blocks of the bipartition. Then
adjacency matrix A(G) has the following form:

A(G) =
[

0m×m B(G)
B(G)ᵀ 0(n−m)×(n−m)

]
, (2.23)

where B(G) is anm×(n−m) matrix called the biadjacency matrix . It is easy to see that the
spectrum of a bipartite graph is symmetric with respect to 0. If

[
u1 . . . um v1 . . . vn−m

]ᵀ
is an eigenvector with eigenvalue λ then

[
u1 . . . um −v1 . . . −vn−m

]ᵀ
is an eigenvector

associated with the eigenvalue −λ. The converse also holds:

Proposition 2.13 (Proposition 3.4.1 in [32]). Let G be an undirected graph.

(i) Graph G is bipartite if and only if for each eigenvalue λ ∈ σ(G), also −λ ∈ σ(G) with
the same multiplicity, i.e., if σ(G) is symmetric with respect to 0.

(ii) If G is connected with the largest eigenvalue λ1 then G is bipartite if and only if −λ1
is an eigenvalue of G.

�



30 CHAPTER 2. PRELIMINARIES

2.6.1 Spectra of certain families of graphs
Here are spectra for the following families of graphs:

• The complete graph Kn. The spectrum is {(n− 1)1, (−1)n−1}. Here, the notation
λk means that λ appears with multiplicity k. AsKn is (n−1)-regular, n−1 is one of its
eigenvalues with eigenvector 1. It is not hard to see that

[
−1 1 0 0 0 . . . 0

]ᵀ
,[

−1 0 1 0 0 . . . 0
]ᵀ
,
[
−1 0 0 1 0 . . . 0

]ᵀ
, . . . ,

[
−1 0 0 . . . 0 0 1

]ᵀ
are eigenvector for the eigenvalue −1.

• The complete bipartite graph Km,n. The spectrum is {
√
mn, 0m+n−2,−

√
mn}.

Suppose that degree-n vertices are labeled 1, . . . ,m and degree-m vertices are labeled
m+ 1, . . . ,m+ n. Let c and c′ be vectors defined as

ci =


√
n, if 1 ≤ i ≤ m;
√
m, otherwise;

and c′i =


√
n, if 1 ≤ i ≤ m;
−
√
m, otherwise.

It is not hard to see that c and c′ are eigenvectors associated with eigenvalues
√
mn

and −
√
mn, respectively. There are m+ n− 2 remaning vectors associated with the

eigenvalue 0. These are d(k) for 2 ≤ k ≤ m and e(k) for m+ 2 ≤ k ≤ m+ n, where

d(k)
i =


1, if i = 1;
−1, if i = k;
0, otherwise;

and e(k)
i =


1, if i = m+ 1;
−1, if i = k;
0, otherwise.

• The cycle Cn. Let us first determine the eigenvalues of the directed cycle ~Cn. Let
V (~Cn) = {0, 1, . . . , n−1}. The arcs of ~Cn are (i, i+1) for i = 0, . . . , n−1 (all numbers
are considered modulo n). It is easy to see that[

1 ζ ζ2 ζ3 . . . ζn−1
]

(2.24)

is an eigenvector for eigenvalue ζ ∈ C if ζn = 1. In other words, eigenvalues of ~Cn are
precisely the complex n-th roots of the unity. Note that A(Cn) = A(~Cn) + A(~Cn)ᵀ.
It is not hard to see that (2.24) is also an eigenvector of A(Cn) associated with the
eigenvalue ζ + ζ−1. By using de Moivre’s formula, we obtain the numbers 2 cos

(
2πj
n

)
for j = 0, . . . , n−1, which comprise the spectrum of Cn. The spectrum of a cycle can
be visualised as shown in Figure 2.18. The dots on the circle are complex numbers
2ekπi/n for k = 0, . . . , n − 1. Their real parts (projections on the x-axis) are the
eigenvalues of Cn. A slightly different version of this diagram is known in chemistry
as the Frost-Musulin circle [79].

• The path Pn. Interestingly, the eigenvalues of Pn can be obtained from the eigen-
values of C2n+2. Let u(ζ) =

[
1 ζ ζ2 . . . ζ2n+1

]ᵀ
. Let ζ = ejπi/(2n+2) where

0 ≤ j ≤ 2n + 1. Note that ζ2n+2 = 1 and that u(ζ) and u(ζ−1) have the same
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1

Figure 2.18: Visualisation of the spectrum of C6.

eigenvalue 2 cos
(
πj
n+1

)
. Therefore, u(ζ) − u(ζ−1) is also an eigenvector for this same

eigenvalue. For ζ 6= ±1, this latter vector has two zero components at distance n+ 1
in C2n+2. It induces the eigenvector on Pn. This can be obtained using the (2.21)
rule by removing the two vertices whose eigenvector entries are 0. Thus, the spec-

2e iπ6

√
3

2e iπ3

1

2e iπ2

0

2e 2iπ
3

−1

2e 5iπ
6

−
√

3

Figure 2.19: Visualisation of the spectrum of P5.

trum of Pn contains values 2 cos
(
πj
n+1

)
for j = 1, . . . , n and is, on the example of P5,

visualised in Figure 2.19. The dots on the circle are complex numbers 2ekπi/(n+1) for
k = 1, . . . , n. Their real parts are the eigenvalues of Pn.

2.6.2 Interlacing eigenvalues
Let A be a matrix. A symmetric minor of A is a submatrix B obtained from A by deleting
some rows and their corresponding columns.

Theorem 2.14 (Interlacing eigenvalues, Theorem 6.2.1 in [130]). Let A be a real symmetric
n × n matrix with eigenvalues λ1 ≥ · · · ≥ λn and let B be a (n − k) × (n − k) symmetric
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minor of A with eigenvalues µ1 ≥ · · · ≥ µn−k. Then

λi ≥ µi ≥ λi+k (2.25)

for i = 1, 2, . . . , n− k. �

In the language of graph theory this can be stated as follows:

Corollary 2.15 (Proposition 3.2.1 in [32]). Let G be a graph on n vertices and H an
induced subgraph of G on n − k vertices. Then the eigenvalues of H interlace those of G,
i.e.,

λi(G) ≥ λi(H) ≥ λi+k(G) (2.26)
for i = 1, 2, . . . , n− k. �

The Perron-Frobenius theorem is an important theorem in linear algebra. It tells us that in
the spectrum of an n × n matrix M with non-negative entries there exists a non-negative
real eigenvalue λ1, such that |λ| ≤ |λ1| for all λ ∈ σ(M), i.e., λ1 obtains maximum absolute
value among all eigenvalues. Moreover, the eigenvalue λ1 has a non-negative real eigenvector
associated with it, called the Perron-Frobenius eigenvector . Larry Page and Sergey Brin
(the founders of Google Inc.) computed the Perron-Frobenius eigenvector of the web graph
[21] and became billionaires. Let us state this important theorem in the language of graph
theory:

Theorem 2.16 (Perron-Frobenius Theorem, Proposition 3.1.1 in [32]). Every graph G has
a real eigenvalue λ1(G) with non-negative real corresponding eigenvector, such that for each
λ ∈ σ(G) we have |λ| ≤ λ1(G). If graph G is connected then λ1(G) is non-degenerate.
Moreover, the value λ1(G) does not increase when vertices or edges are removed from G. �

By combining Corollary 2.15 and Theorem 2.16, an important result on the spectrum of a
graph is obtained:

Corollary 2.17 (Proposition 3.1.2 in [32]). Let G be a connected graph with the largest
eigenvalue λ1. If G is regular of degree k then λ1 = k. Otherwise,

δ(G) < d(G) < λ1 < ∆(G), (2.27)

where δ(G), d(G) and ∆(G) are the minimum, average and the maximum degree of G,
respectively. �

2.6.3 Nullity of Graphs
Let E(λi) denote the eigenspace corresponding to eigenvalue λi. A graph G is said to be
singular if A(G) is singular, i.e., if at least one of its eigenvalues is zero. The eigenspace
E(0) is called the nullspace of A(G). Vectors in the nullspace of A(G) are called kernel
eigenvectors.

Definition 2.6 ([187]). The nullity of a singular graph G, denoted η(G), is the dimension
of the nullspace of A(G), i.e., the multiplicity of the zero eigenvalue of G.
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A vertex r is core for the eigenspace E(λi) corresponding to eigenvalue λi if there is a
non-zero entry cr for some vector c ∈ E(λi); otherwise the vertex is core-forbidden.

Example 2.16. In Section 2.6.1 we have determined the eigenvalues (and their corre-
sponding eigenvectors) of the complete bipartite graph Kn,m. We have seen that η(Kn,m) =
n+m− 2. If n+m > 2 then the graph Kn,m is singular. Moreover, every vertex is a core
vertex for every eigenspace.

Consider the graph on 6 vertices from Example 2.15. From Figure 2.17 it is clear that
vertices 1, 2, 5 and 6 are core vertices for eigenspace E(−1), whilst, vertices 3 and 4 are
core-forbidden. �

Definition 2.7 ([188]). A graph G is a nut graph if it is singular with nullity one and
none of the components of a kernel eigenvector is zero.

Example 2.17. In Figure 2.20, there are two examples of nut graphs. The reader can

1

−1 −1

−1

1
−1

−1

−1
1

(a)

1
−1

−11

1

−1

−1

(b)

Figure 2.20: Two small nut graphs.

determine their eigenvalues as an exercise and verify that they are indeed singular with
nullity one. The numbers next to vertices are the corresponding components of the (non-
normalised) eigenvector that belongs to the eigenvalue 0. �

The inertia of a matrix A is the ordered triple (n+, n0, n−), where n+ is the number of
positive eigenvalues of A, n− is the number of negative eigenvalues of A, and n0 is the
number of zero eigenvalues of A. Inertia of a graph G is the inertia of its adjacency matrix
A(G). Note that n+ + n− + n0 = n, where n is the order of graph G and η(G) = n0.
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Chapter 3

Chemical Concepts via Graph Theory

Chemistry is all about bonding. Without knowing the basics of bond formation, introduction
of chemical concepts via graph theory would not make much sense to the reader. We will
first introduce, at a very superficial level, the valence bond method. Then, we will discuss
the molecular orbital (MO) theory, which offers a more sophisticated model of bonding.

The two main categories of bonds are the covalent bond, in which two electrons are
shared between two bonding atoms, and the ionic bond, in which electrons are not shared
(one atom gives its electron to the other atom). Most carbon-based compounds are cova-
lently bonded, therefore we will only consider covalent bonds here.

3.1 Valence Bond Theory
The concepts described in this section can be found in any general chemistry textbook such
as [155]. We recommend the book by P. W. Atkins [6].

The essence of an atom is the number of protons in its nucleus, which is called the atomic
number1. For example, the C atom has 6 protons in its nucleus. Protons are positively
charged. In order for an atom to be neutral, it has to have the same number of (negatively
charged) electrons. When the number of protons does not balance the number of electrons,
the atom itself is charged and is called an ion (anion if negatively charged and cation if
positively charged).

Electrons reside in shells that surround the nucleus. The first shell is of the lowest
energy, is the closest to the nucleus and can host up to 2 electrons. The second shell is
higher in energy and can host up to 8 electrons. The third shell is even higher in energy
and can host up to 18 electrons, etc. Electron shells are further divided into (atomic)
orbitals. An orbital is a region of space in which an electron is found2. Each orbital can
host up to 2 electrons. A shell can be thought of as a collection of orbitals. The shape of an
orbital is important in chemical bonding. The two main types of atomic orbitals (in organic
chemistry) are s and p orbitals (see Figure 3.1). The s orbital is spherical, whilst, the p
orbital is “dumbbell” shaped. For each atom one can write down its electron configuration,

1We ignore the presence of neutrons.
2More precisely, it is a one-electron wavefunction, solving an effective Schrödinger equation for an

electron in the presence of the others, and defining the distribution of the electron in space.

35
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(a) s orbital (b) p orbital (c) sp3 orbital

Figure 3.1: The shape of s, p and sp3 orbitals.

i.e., the distribution of electrons of that atom in atomic orbitals. For example, the electron
configuration of sulfur is 1s2 2s2 2p6 3s2 3p4. It is a sequence of terms of the form 3s2, where
the letter denotes the shape of the orbital, the number in front of the letter tells us the
shell that includes the orbital and the superscript is the number of electrons occupying
that orbital. The 2p level consists of three individual p orbitals, the px, py and pz orbitals,
which are of equal energy in free space and are called degenerate orbitals. The set of
degenerate orbitals is referred to as the subshell. The degenerate orbitals of the p subshell
are arranged in such a way that they point in three mutually perpendicular directions in
space. The electron configuration of sulfur can be abbreviated as [Ne] 3s2 3p4, where [Ne]
stands for the electronic configuration of neon, the nearest noble gas atom.

The outermost shell of an atom is called the valence shell. The electrons in the valence
shell are called the valence electrons. They are the most important electrons for bonding.
The ones in the inner shells are called core electrons. The valence bond theory treats
chemical bond as an overlap of orbitals of valence shell. In order to form a chemical
bond, two half-filled orbitals may superimpose to share electrons. They interact in order
to minimize the overall energy of the system.

There is a systematic approach to describe electrons in an atom. It turns out [92] that
each electron can be described completely using four quantum numbers (n, l,ml,ms). Each
electron in an atom has a different quadruple of quantum numbers. The principal quantum
number , n, corresponds to the electron shell. Possible values of number n are positive
integers, i.e., n ∈ {1, 2, 3, . . .}. The largest value of n for an atom corresponds to the
valence shell. The angular quantum number (sometimes called orbital quantum number), l,
describes the subshell. The value of l ranges from 0 to n−1. In chemistry, l = 0 is called an
s orbital, l = 1 is called a p orbital3, l = 2 is called a d orbital, etc. The magnetic quantum
number , ml, describes the specific orbital within the subshell. The value of ml ranges from
−l to l. We can immediately see that the s subshell contains only one orbital (ml ∈ {0}),
the p subshell contains three orbitals (ml ∈ {−1, 0, 1}), the d subshell contains five orbitals
(ml ∈ {−2,−1, 0, 1, 2}), etc. The spin projection quantum number , ms, describes the spin
of the electron within an orbital. The value of ms is in the range −s,−s + 1, . . . , s − 1, s,
where s is the spin quantum number of the particle. An electron has spin number s = 1

2 ,

3It is a subshell that comprises orbitals px, py and pz. It would be correct to call it a p subshell.



3.1. VALENCE BOND THEORY 37

therefore ms ∈ {−1
2 ,

1
2}. Table 3.1 summarises the above discussion.

As we will limit our consideration to hydrocarbons, we will not go beyond the p sub-
shell. Six dominant elements that are common to all living organisms are carbon, hydrogen,
nitrogen, oxygen, phosphorus and sulfur. CHNOPS [5] is an acronym for those basic ele-
ments in organic chemistry. The first n rows of Table 3.2 are the quantum numbers of the
n electrons in a (neutral) atom with atomic number n. The table consists of 18 rows which
is sufficient for all CHNOPS elements.

Name Symbol Meaning Range
Principal quantum number n shell n ≥ 1
Angular quantum number l subshell l ∈ {0, 1, . . . , n− 1}
Magnetic quantum number ml orbital ml ∈ {−l,−l + 1, . . . , l}
Spin projection quantum number ms spin ms ∈ {−1

2 ,
1
2}

Table 3.1: The four quantum numbers for electrons in an atom.

n l ml ms

1 0 0 1/2
1 0 0 −1/2
2 0 0 1/2
2 0 0 −1/2
2 1 -1 1/2
2 1 0 1/2
2 1 1 1/2
2 1 -1 −1/2
2 1 0 −1/2

n l ml ms

2 1 1 −1/2
3 0 0 1/2
3 0 0 −1/2
3 1 -1 1/2
3 1 0 1/2
3 1 1 1/2
3 1 -1 −1/2
3 1 0 −1/2
3 1 1 −1/2

Table 3.2: The first n rows in the table are quantum numbers of the n electrons in a neutral
atom with atomic number n.

Example 3.1. Consider the hydrogen sulfide molecule with molecular formula H2S. The
electronic configuration of hydrogen is 1s1. Its only orbital is half-filled. We have seen above
that the electron configuration of sulfur is [Ne] 3s2 3p4. It has 6 valence electrons. The 3s
orbital is completely filled. One of the three degenerate 3p orbitals, say pz, is completely
filled and the other two host one electron each. The 1s orbital of an H atom and one of
the half-filled 3p orbitals of S, say px, overlap to form the bond. This can be represented as
an orbital diagram (see Figure 3.2). Note that each of the orbitals of each atom contains 2
electrons. The pz orbital of S does not participate in bonding. This pair of valence electrons
that are not shared with another atom is called a lone pair . �

The electron configuration of carbon is [He] 2s2 2p2. The 2s orbital is completely filled.
Two of the 2p orbitals, say 2px and 2py, are half-filled while the remaining one, 2pz, is
empty. How can then a C atom make 4 bonds with hydrogen atom to form methane? The
C atom promotes one electron from 2s to 2pz. The 2s and the three 2p orbitals are then
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Figure 3.2: Orbital diagram of H2S, depicting orbitals 3s, 3px, 3py and 3pz of atom S.
Orbitals 3px and 3py overlap with 1s orbitals of H atoms, whilst 3pz contains a lone pair.

.

“mixed together” and four identical hybridised4 orbitals are formed, called sp3 orbitals (see
Figure 3.1 which shows the shape of a hybridised sp3 orbital). This notation indicates the
number and type of the building blocks that mix together to form the hybrid. The four
hybrid sp3 orbitals of C then host one electron each. They are also dumbbell shaped, but
with one lobe much larger than the other. They point in four different directions in the
space, from the centre of a tetrahedron towards its apices (see Example 2.11). Each of the
four orbitals make an overlap with 1s orbitals of a H atom to form the CH4 molecule. Its
orbital diagram is shown in Figure 3.3. Hybridisation costs energy that is then paid back

C

H H

H

H

Figure 3.3: Orbital diagram of CH4 with 4 sp3 orbitals.

by formation of bonds.
Now, consider ethene with molecular formula C2H4 (its structural formula is drawn in

Figure 3.9). In this case, the 2s, 2px and 2py orbitals (on each C atom) mix together to
form three sp2 hybridised orbitals and the 2pz orbital remain in its original form. The
shape of a sp2 orbital resembles a sp3 orbital. The three sp2 hybridised orbitals lie in the
same plane and point in three different directions (from the centre of a triangle towards
its vertices). The remaining pz orbital is perpendicular to that plane. Two of the three
hybridised orbitals of a C atom overlap with a 1s orbital of H to form a C–H bond. The

4They are called hybridised because they are hybrids of the original orbitals.
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C
C

H

H H

H

Figure 3.4: Orbital diagram of C2H4 with an overlap of 2 sp2 orbitals.

remaining sp2 hybridised orbital overlaps with another sp2 of a different C atom to form
the C–C bond. The two C atoms are therefore bonded with a double bond. The second
bond comes from the side-by-side overlap of the pz orbitals. We see that two kind of bonds
can be formed: when the overlap occurs between the two bonding nuclei we speak of a σ
(sigma) bond; when the overlap occurs above and below the nuclei and not between them
we speak of a π (pi) bond. So, the double bond between the two C atoms is one σ bond and
one π bond. Note that the C2H4 molecule is planar and that rotation is restricted around
the C–C bond. In the ethane molecule (with molecular formula C2H6), there is only one
σ bond between the two C atoms. There is (almost) free rotation around that bond which
implies an infinite number of different conformations of very similar energy.

Example 3.2. This example shows another possible type of hybridisation. Consider the
ethyne molecule with molecular formula C2H2. The 2s and 2px orbitals in C can mix

C H

H C

Figure 3.5: Orbital diagram of C2H2.

together to form two sp hybridised orbitals. They lie on the same line and point in the
opposite directions. The remaining 2py and 2pz orbitals are perpendicular to this line and
to each other (see Figure 3.5). The bond formation is similar to the case of C2H4, except
that there are now two pairs of 2p orbitals that overlap side-by-side. There is a triple bond
between the two C atoms: one σ bond and two π bonds. �
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3.2 Hückel Molecular-Orbital Theory
This section is a very brief introduction to Hückel Molecular-Orbital theory. We will mostly
follow [44] which is the main reference. Here, we are not going to argue in favor or against
the theory. We will accept it as it is. For an in-depth treatment of concepts from quantum
chemistry the reader can consult any of the numerous references, such as [17, 157, 192, 195].
In theoretical chemistry, one can essentially do one of the two things: perform very accurate
calculations (involving heavy-duty numerical computation) for a single molecule; develop
general simplified models to obtain insight in a large class of molecules. Hückel theory is
probably the simplest possible tool set that, despite of its simplicity, still gives meaningful
results for unsaturated carbon frameworks and similar systems.

We will start in quantum mechanics and do a series of approximations until we finally
end up with Hückel theory. The main goal of the quantum mechanics is to solve the
Schrödinger wave equation

HΨ = EΨ. (3.1)

In this equation, H is a differential operator referred to as the Hamiltonian operator for
a system of nuclei and electrons. It can be written as H = T + V , i.e., it consists of two
parts: the kinetic-energy operator T and the potential-energy operator V . Let there be m
nuclei and n electrons in the system and let Ri and rj be the coordinates of the i-th nucleus
and the j-th electron, respectively. Function Ψ = Ψ(R1, . . . ,Rm, r1, . . . , rn) in (3.1) is the
many-particle wave function.

The kinetic-energy operator in atomic units is

T = −
n∑
i=1

1
2∇

2
i −

m∑
i=1

1
2Mi

∇̃2
i . (3.2)

In the above expression,Mi is the ratio of the mass of i-th nucleus to the mass of an electron
and ∇2

i is the Laplacian involving differentiation with respect to the coordinates of the i-th
electron while ∇̃2

i is the Laplacian with respect to the coordinates of the i-th nucleus. In
other words, the first term in (3.2) is the operator for the kinetic energy of the electrons
and the second term is the operator for the kinetic energy of the nuclei.

The potential-energy operator is

V = −
n∑
i=1

m∑
j=1

Zj
|ri −Rj|

+
n−1∑
i=1

n∑
j=i+1

1
|ri − rj|

+
m−1∑
i=1

m∑
j=i+1

ZiZj
|Ri −Rj|

. (3.3)

In the above expression, Zi is the atomic number of the i-th nucleus. The first term in
(3.3) represents the Coulomb attraction between electrons and nuclei, whilst, the second
and third term represent the repulsion between electrons and between nuclei, respectively.

In this process, we will do a series of approximations. First, we make the Born-
Oppenheimer approximation which is central to quantum chemistry. Nuclei are much heav-
ier than electrons and they move very slowly compared to the electrons. Therefore, we
can clamp them (i.e., assign them fixed positions in space). Within this approximation the
second term of (3.2) can be neglected and the third term of (3.3) is constant. It has no
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effect on the operator eigenfunctions and will also be neglected. What remains is called the
electronic Hamiltonian:

Helec = −
n∑
i=1

1
2∇

2
i −

n∑
i=1

m∑
j=1

Zj
|ri −Rj|

+
n−1∑
i=1

n∑
j=i+1

1
|ri − rj|

. (3.4)

The Schrödinger equation becomes

HelecΨ = EΨ, (3.5)

where Ψ = Ψ(r1, . . . , rn) is the many-electron wave function. One important principle of
quantum mechanics is antisymmetry. This means that if we swap ri and rj we have:

Ψ(r1, . . . , ri, . . . , rj, . . . , rn) = −Ψ(r1, . . . , rj, . . . , ri, . . . , rn). (3.6)

We will limit our consideration to conjugated π systems, i.e., to planar carbon frame-
works that have one pπ orbital at each carbon centre. That pπ orbital, called the atomic
orbital, is perpendicular to the plane of the molecule5. In the molecular-orbital theory,
electrons are not restrained to atomic orbitals, but reside in so-called molecular orbitals.
Each π electron is allowed to move over the whole framework of the conjugated system.
Only those π electrons will be considered.

In the LCAO (linear-combination-of-atomic-orbitals) approach, the molecular orbital is
made out of atomic orbitals. Let there be n atoms in the framework and let

{χr}nr=1 (3.7)

be the set of atomic orbitals called the basis. Molecular orbitals are of the form

φi =
n∑
r=1

c(i)
r χr, (3.8)

i.e., they are (weighted) linear combinations of the atomic orbitals. We assume that
χ1, . . . , χn are given in advance (they were obtained somewhere else). This approach is
an approximation and is not expected to give the best possible results. When the best-
possible molecular orbitals are attained, it is said that the Hartree-Fock Limit is reached.
In order to get close to it, heavy-duty quantum mechanical calculations are required. The
purpose of Hückel theory is not to determine properties of a single molecule very precisely,
but to enable us to compare a large class of molecules one to another.

The Hamiltonian for a system with a large number of electrons (3.4) has a large number
of terms. There is repulsion between every pair of electrons and the operator has to take
this into account. Instead, one can use the effective Hamiltonian

Heff = Teff + Veff (3.9)

for each π-electron. In this effective Hamiltonian, there is no reference to the other electrons.
The interaction between them is “averaged”. We will not bother to write down the Heff

5The subscript π in pπ indicates that this p orbital in involved in the formation of π bonds.



42 CHAPTER 3. CHEMICAL CONCEPTS VIA GRAPH THEORY

precisely. In Hückel theory this is not needed. Actually, this is the essence of the Hückel
theory. Every result will be given in terms of two empirical parameters α and β. It is not
even necessary to know what the numeric values of these parameters are. Our job now is
to solve the

Heffφi = εiφi (3.10)

equation, where φi is a molecular orbital and εi is the orbital energy. In quantum mechanics
the expression

E =
∫

Ψ∗HΨ dτ∫
Ψ∗Ψ dτ (3.11)

is the energy of the wave function Ψ. (In [44], it is called the Rayleigh Ratio.) The inte-
gration is done over all space (and over all variables). Variation Principle from quantum
mechanics says that an approximate solution Ψ̃ to the Schrödinger equation gives an ap-
proximate energy

Ẽ =
∫

Ψ̃∗HΨ̃ dτ∫
Ψ̃∗Ψ̃ dτ

(3.12)

which is always larger than the exact energy E. The best wavefunction of a given form is
the one that gives the lowest energy Ẽ. It can be found by minimizing Ẽ with respect to
the free parameters in the wavefunction.

In our case, φ = c1χ1 + c2χ2 + · · ·+ cnχn, where {χr}nr=1 is a fixed basis, thus the energy
ε is a function of c1, c2, . . . , cn. The minimum is obtained for those values of c1, c2, . . . , cn
where

∂ε

∂cr
= 0 (3.13)

for every r = 1, 2, . . . , n. We assume that the basis orbitals are normalised, i.e., for every
r = 1, 2, . . . , n: ∫

χ∗rχr dτ = 1. (3.14)

Moreover, {χr}nr=1 and φ can be chosen to be real and we may omit complex conjugation
from the equations and write ∫

χ2
r dτ = 1. (3.15)

We will also assume that atomic orbitals on different centres are orthogonal, i.e.,

∫
χrχs dτ = 0 (3.16)

for r 6= s. The energy ε can now be evaluated (note that the Hamiltonian operator is
self-adjoint):
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∫
φ2 dτ =

∫
(c1χ1 + c2χ2 + · · ·+ cnχn)2 dτ

=
n∑
r=1

∫
c2
rχ

2
r dτ +

∑
1≤r 6=s≤n

∫
crcsχrχs dτ

=
n∑
r=1

c2
r

∫
χ2
r dτ + 2

∑
1≤r<s≤n

crcs

∫
χrχs dτ

=
n∑
r=1

c2
r

(3.17)

and ∫
φHφ dτ =

∫
(c1χ1 + · · ·+ cnχn)H(c1χ1 + · · ·+ cnχn) dτ

=
n∑
r=1

∫
c2
rχrHχr dτ +

∑
1≤r 6=s≤n

∫
crcsχrHχs dτ

=
n∑
r=1

c2
r

∫
χrHχr dτ + 2

∑
1≤r<s≤n

crcs

∫
χrHχs dτ.

(3.18)

Let us define Hij :=
∫
χiHχj dτ . This enables us to write∫

φHφ dτ =
n∑
r=1

c2
rHrr + 2

∑
1≤r<s≤n

crcsHrs. (3.19)

Integrals Hii and Hij, i 6= j, have a physical interpretation. Hii term is the energy of an
electron in an orbital χi, i.e., it measures the attraction of i-th atom for electrons, whilst
Hij, i 6= j, is the energy of interactions between orbitals χi and χj on centres i and j, i.e., it
measures the attraction of the bond region between i-th and j-th atom. Plainly speaking,
Hii tell us something about atoms and Hij, i 6= j, tell us something about bonds. The
energy can be expressed as

ε =
∑n
r=1 c

2
rHrr + 2∑1≤r<s≤n crcsHrs∑n

r=1 c
2
r

. (3.20)

Now, let us differentiate (3.20) with respect to ci:

∂ε

∂ci
=

(
n∑
r=1

c2
r

)−2
2ciHii + 2

∑
r 6=i

crHri

 n∑
r=1

c2
r −

 n∑
r=1

c2
rHrr + 2

∑
1≤r<s≤n

crcsHrs

 2ci


=

2ciHii + 2∑r 6=i crHri∑n
r=1 c

2
r

− 2εci∑n
r=1 c

2
r

(3.21)

If ∂ε
∂ci

= 0 then the enumerator of the above expression should be 0. We may assume that∑n
r=1 c

2
r 6= 0 (or else, we would obtain the trivial solution c1 = c2 = · · · = cn = 0 which does

not make physical sense and we are not interested in it). We obtain the following system
of equations

2
n∑
r=1

crHri − 2εci = 0 (i = 1, . . . , n) (3.22)
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which are called the secular equations of the system. We need to solve the system for ci
and ε. The system can be rewritten in the matrix form (we also divided the equations by
2 to get rid of that constant):

H11 − ε H12 · · · H1n
H21 H22 − ε · · · H2n
... ... . . . ...

Hn1 Hn2 · · · Hnn − ε



c1
c2
...
cn

 = 0n×1. (3.23)

Let us define the matrix H := [Hij]ni,j=1, called the Hückel Hamiltonian matrix and let
c = [c1 c2 . . . cn]ᵀ. The above system can be written in a more “compact form”:

(H− εIn×n)c = 0n×1. (3.24)

The matrix H is a Hermitian matrix (it is real and symmetric). In order to obtain a non-
trivial solution, det(H − εIn×n) = 0. This is called the secular determinant. Expansion
of this determinant is a polynomial of order n in variable ε. This is nothing but the
characteristic polynomial of H. Its roots are eigenvalues of the matrix and they are all real.
This means that there are n molecular orbitals associated with the system. Thus, we need
to add an index to the molecular orbital:

φi =
n∑
r=1

c(i)
r χr. (3.25)

It only remains to show how to obtain the coefficients {c(i)
r }nr=1 associated with the i-th

orbital energy εi. They have to satisfy the system of equations
n∑
r=1

c(i)
r Hjr − εic(i)

j = 0 (j = 1, . . . , n). (3.26)

Because det(H − εIn×n) = 0, one of the equations is a linear combination of the others.
There are n − 1 independent equations and n unknowns. We will also require that φi is
normalised, i.e.,

∫
φ2
i dτ =

(
c

(i)
1

)2
+
(
c

(i)
2

)2
+ · · ·+

(
c(i)
n

)2
= 1. This uniquely determines the

coefficients. Note that they are the eigenvectors of the corresponding eigenvalues εi.
We assumed that the basis is normalised and orthogonal, i.e., Srr =

∫
χ2
r dτ = 1 and

Srs =
∫
χrχs dτ = 1 for r 6= s. This can be, in a more compact way using the Kronecker δ

notation, written as Srs = δrs. Let us define S := [Sij]ni,j=1. In our case, S = In×n. Had we
not made the above assumptions, we would have obtained (in exactly the same way by the
variation principle) an equation that slightly generalises (3.24):

(H− εS)c = 0n×1. (3.27)

Number Sij also has a physical interpretation. It is an overlap between orbitals χi and χj
on centres i and j.

When Hückel developed the theory, he used notation αr instead of Hrr and βrs instead
of Hrs (r 6= s). This is called the α, β-notation. Number αr is called the Coulomb integral
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for atom r and βrs is called the resonance integral for the bond between r and s. Chemical
intuition tells us that βrs is close to 0, except for atoms that are bonded neighbours. In the
case of conjugated hydrocarbons, Hückel made the following assumptions (they are now
known as the Hückel approximations):

(i) Integrals αr are set equal to a common value α := α1 = · · · = αn.

(ii) If r and s are not bonded neighbours then βrs = 0. If they are bonded then they are
set equal to a common value β.

Let G denote the Hückel graph, i.e., the carbon framework of the π system under consid-
eration. Then βrs = β if r ∼ s in G, otherwise βrs = 0.

Example 3.3. Let us work out an example in great detail. Take the butadiene molecule (see
Figure 3.6). It comes in two isomers6. Trans isomer is on the left-hand side and cis isomer

(a) Trans butadiene (b) Cis butadiene (c) Hückel graph

Figure 3.6: Two isomers of butadiene and their Hückel graph.

is on the right-hand side. Hückel theory is only concerned with the σ-bond connectivity
and not with molecular geometry. It makes no distinction between the two isomers. If we
look at the skeleton graph associated with the molecules (see Figure 3.6(c)), we obtain the
path P4 in both cases. The Hückel Hamiltonian matrix (using the α, β-notation) is:

H =


α β 0 0
β α β 0
0 β α β
0 0 β α

 . (3.28)

First, we have to solve the following equation to obtain the energies of the molecular orbitals:

det(H− εI4×4) =

∣∣∣∣∣∣∣∣∣
α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

∣∣∣∣∣∣∣∣∣ = 0. (3.29)

6The IUPAC “Gold Book” [138] defines an isomer as one of several molecular entities that have the
same molecular formulae but different structural formulae or different stereochemical formulae (and hence
different physical or chemical properties).
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We may divide all elements of the determinant by β (since it is a zero determinant and
β 6= 0). Also, let us introduce λ = ε−α

β
. The determinant becomes:

∣∣∣∣∣∣∣∣∣
−λ 1 0 0
1 −λ 1 0
0 1 −λ 1
0 0 1 −λ

∣∣∣∣∣∣∣∣∣ = λ4 − 3λ2 + 1 = 0. (3.30)

�

Note that the solutions of (3.30) are exactly the eigenvalues of the skeleton graph G and
Hückel theory eventually turns into the spectral graph theory. The energies of molecular
graph, i.e., orbital energies of the molecular orbitals, can be expressed with the eigenvalues
λ1, . . . , λn of the Hückel graph in the following way:

εi = α + λiβ. (3.31)

As α is simply the origin of the energy scale, and |β| is a unit of energy difference from α,
some authors prefer to use λi as a proxy for orbital energy of the i-th molecular orbital.

Example 3.4. Let us solve equation (3.30) from Example 3.3. The four roots of the
characteristic polynomial that is associated with the butadiene molecule (see Figure 3.6)
are:

λ1 =
√

5+1
2 ≈ 1.61803,

λ2 =
√

5−1
2 ≈ 0.61803,

λ3 = −
√

5+1
2 ≈ −0.61803,

λ4 = −
√

5−1
2 ≈ −1.61803.

�

The eigenvalues will always be given in non-increasing order, i.e., λ1 > λ2 ≥ · · · ≥ λn.
Recall that the eigenvalue λ1 is non-degenerate for a connected graph, and λn = −λ1 for
bipartite graphs. The values of α and β are negative. Because α measures the energy of a π
electron bound within a carbon atom, it has to be negative. In order to remove the electron,
energy has to be expanded. A similar argument suggests that β also has to be negative
since the bond attracts an electron. At this point we do not know anything about their
magnitudes. The energy is measured relatively to α which is regarded as zero energy level.
The four energy levels are visualised in the Figure 3.7. This is called a molecular orbital
diagram. Because β is negative, the lowest energy level is the one associated with the largest
eigenvalue λ1. If λi > 0, the orbital is referred to as a bonding orbital, because an electron
in such orbital decreases the total π electron energy (we will shortly see how the total π
electron energy is defined) of the system. Orbitals for which λi < 0 are called anti-bonding.
If the orbital is occupied by an electron, the total π electron energy is increased. If λi = 0,
the orbital is called non-bonding. Note that the Perron-Frobenius theorem (Theorem 2.16)
implies that there always exists a bonding molecular orbital in a π conjugated system.
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Figure 3.7: Visualisation of the energy levels of the molecular orbitals.

Note that the vector c(i) = [c(i)
1 c

(i)
2 . . . c(i)

n ]ᵀ that contains coefficients associated with
the eigenvalue λi is the (normalised) eigenvector which corresponds to that eigenvalue.
Entries in this eigenvector specify the molecular-orbital and are called LCAO coefficients
or MO coefficients.
Example 3.5. Let us continue our calculations on the budatiene molecule (see Figure 3.6).
We have already determined the eigenvalues of its Hückel graph (see Example 3.4). The
normalised eigenvectors are (we only give numerical values):

c(1) ≈
[
0.371748 0.601501 0.601501 0.371748

]ᵀ
,

c(2) ≈
[
−0.601501 −0.371748 0.371748 0.601501

]ᵀ
,

c(3) ≈
[
0.601501 −0.371748 −0.371748 0.601501

]ᵀ
,

c(4) ≈
[
−0.371748 0.601501 −0.601501 0.371748

]ᵀ
.

We can now write down the molecular orbitals expressed in the basis:
φ1 = 0.37χ1 + 0.60χ2 + 0.60χ3 + 0.37χ4,

φ2 = −0.60χ1 − 0.37χ2 + 0.37χ3 + 0.60χ4,

φ3 = 0.60χ1 − 0.37χ2 − 0.37χ3 + 0.60χ4,

φ4 = −0.37χ1 + 0.60χ2 − 0.60χ3 + 0.37χ4.

�

Orbital φ1 is the one with the lowest energy. We are going to assign electrons to molecu-
lar orbitals using three fundamental principles. By the Aufbau Principle, available orbitals
of lowest energy are filled first. By the Pauli Exclusion-Principle, they contain at most 2
electrons (with opposite spins). If there are multiple orbitals with the same energy then
by the Hund’s Rule one electron is assigned into each of them before they start to double
up. There are four electrons in the electron cloud and they are assigned to the two orbitals
of lowest energy (see Figure 3.8). This electron configuration (assignment of electrons to
orbitals) is the so-called ground state configuration for the system in consideration. Let
vi (for i = 1, . . . , n) denote the number of electrons assigned to the i-th molecular orbital.
Note that

vi =


2, if φi is doubly occupied;
1, if φi is singly occupied;
0, if φi is unoccupied.

(3.32)
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Figure 3.8: The assignment of electrons to the orbitals.

The electron configuration can be written down in the form of (φ1)v1(φ2)v2 . . . (φn)vn . The
ground state for the butadiene in this notation is (φ1)2(φ2)2. The vector v =

[
v1 v2 . . . vn

]
is another (equivalent) way of representing the electron configuration.

Certain orbitals of a given electron configuration deserve a special name (and acronym):

(i) highest (fully or partly) occupied molecular-orbital (HOMO);

(ii) lowest unoccupied (or partly unoccupied) molecular-orbital (LUMO);

(iii) singly occupied molecular-orbital (SOMO);

(iv) doubly occupied molecular-orbital (DOMO).

Their meaning is self-explanatory. With other words, HOMO is the last orbital with vi > 0
and LUMO is the first orbital with vi < 2. If there are SOMOs, HOMO and LUMO
coincide. We will use λHOMO and λLUMO to denote the eigenvalue of HOMO and LUMO,
respectively. Here are some more definitions. An electron configuration is said to be:

(i) closed shell if all orbitals are either doubly occupied or unoccupied;

(ii) open shell if there are some SOMOs (forced by either odd number of electrons or
Hund’s rule);

(iii) properly closed shell if the HOMO is bonding and LUMO is non- or antibonding, i.e.,
λHOMO > 0 ≥ λLUMO;

(iv) pseudo closed shell if it is closed and some bonding orbitals are empty, i.e., λLUMO > 0;

(v) meta closed shell if it is closed and some antibonding orbitals are occupied, i.e.,
λHOMO < 0.

The HOMO-LUMO gap is defined as |λHOMO − λLUMO|. Recently, the HOMO-LUMO
gap has gained the attention of mathematicians [115, 142, 144, 143, 160]. Note that larger
HOMO-LUMO gaps indicate greater stability of systems [74, 75]. The total π electron
energy, denoted Eπ, is the sum of energies of electrons in the occupied molecular orbitals:

Eπ =
n∑
i=1

viεi =
n∑
i=1

vi(α + λiβ). (3.33)
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For the (ground state) butadiene from the above example, the total π electron energy is

Eπ = 2(α + x1β) + 2(α + x2β) = 2(α +
√

5+1
2 β) + 2(α +

√
5−1
2 β)

= 4α + 2
√

5β ≈ 4α + 4.472β.
(3.34)

Chemists define the total π energy of the molecule as

Eπ =
n∑
i=1

viλi. (3.35)

(We put π as the lower index to distinguish between Eπ and Eπ.) A related quantity is the
graph energy [97] which is defined as

EG =
n∑
i=1
|λi|. (3.36)

The reader can work out the total π electron energy for ethene (ethylene) which is shown
in Figure 3.9. Its total π electron energy is Eπ(ethene) = 2α + 2β. Ethene has only one

(a) Structural formula (b) Hückel graph

Figure 3.9: Structural formula of ethene and its skeleton graph, P2.

C––C bond, so this value can be regarded as the π electron energy of a double bond. Now,
suppose that the system in consideration would have, instead of delocalised π electrons, a
group of localised double bonds such that every electron would participate in one of them.
Then the energy of those electrons would be 2ν(α + β) where ν is the number of double
bonds. The difference between the energy of a group of localised double bonds and the
total π electron energy of the system is called the delocalisation energy (also the resonance
energy). For the butadiene molecule from the above example, this value is 0.472β. It is
the result of allowing electrons to delocalise. When it is large it suggests stability of the
system. When the delocalisation energy is small or negative it suggest that the system is
unstable or even non-existent.

The four molecular orbitals of the butadiene are visualised with diagrams in Figure 3.10.
When the coefficient at the atomic orbital is positive, the red lobe is pointing up. When
the coefficient is negative, it is pointing down. The sizes of those lobes in the figure are
proportional to their corresponding coefficients. There is a physical significance in this.
Think of solutions of the Schrödinger equation for a particle in a box . It does not take a lot
of imagination to see waves in the above figures. When the sign between two consecutive
atomic orbitals changes, we think of this as a “node” on the bond between the two centres.
When an electron is added to an orbital, the bonds with nodes weaken and the bonds
without nodes get stronger. Suppose that butadiene from the above example is in ground
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(a) φ1 (b) φ2

(c) φ3 (d) φ4

Figure 3.10: Visualisation of molecular orbitals of butadiene molecule.

state. If another electron is added, it is assigned to the φ3 orbital. The middle bond is then
stronger, but the 1–2 and the 3–4 bonds are weakened. The same happens if one electrons
is removed from the ground state. In the ground state, it is expected that the 1–2 and
3–4 bonds are stronger than the middle one; the φ1 orbital adds to strength of all bonds
while the φ2 orbital weakens the middle bond and contributes to the strength of the 1–2
and 3–4 bonds.

Let us point out that there are certain ways to estimate numerical values of α and β.
However, most of the properties that can be calculated via Hückel molecular-orbital theory
(atomic charge, bond order, free valence etc.) are calculated from the eigenvectors and the
numeric values of α and β are not really needed.

3.2.1 Atomic Charge, Bond Order and Free Valence

Recall that the molecular orbital φi = ∑n
r=1 c

(i)
r χr, where c(i)

r are the MO coefficients and
χr are the atomic orbitals. In quantum mechanics, charge densities are given by the square
of the amplitude of a wave function. Let us integrate |φi|2 over the whole space (recall that
basis is normalised and orthogonal):

∫
|φi|2 dτ =

∫ (
c

(i)
1 χ1 + · · ·+ c(i)

n χn
)2

dτ =
n∑
r=1

(
c(i)
r

)2
= 1. (3.37)

This makes perfect sense and comes as no surprise (the probability that an electron is
somewhere in space is 1). Individual term q(i)

r :=
(
c(i)
r

)2
, called partial π charge, represents

the probability that an electron in the i-th MO is found on atom r. Instead of probability,
chemists use the term charge density. The total π charge on atom r, denoted Qr, is the
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sum of contributions from all individual electrons in all orbitals:

Qr =
n∑
i=1

viq
(i)
r =

n∑
i=1

vi
(
c(i)
r

)2
, (3.38)

where vi is the number of electrons assigned to the orbital φi. Total π charges Q1, . . . , Qn

are easily calculated for an arbitrary conjugated system.

Example 3.6. Let us determine charge densities of (ground state) butadiene (in Fig-
ure 3.3):

Q1 = 2 · 0.3717482 + 2 · (−0.601501)2 = 1,
Q2 = 2 · 0.6015012 + 2 · (−0.371748)2 = 1,
Q3 = 2 · 0.6015012 + 2 · 0.3717482 = 1,
Q4 = 2 · 0.3717482 + 2 · 0.6015012 = 1.

Surprisingly, charge density is equal to 1 on each atom. Later, we will see that this is true
for all the so-called alternant hydrocarbons (defined in Section 3.2.2). �

When |φ2
i | in (3.37) is expanded, it has terms of type c(i)

r c
(i)
s χrχs. In our approximation,

the orbitals χr and χs, r 6= s, were assumed to be orthogonal. Let us put this neglect of
overlaps aside for a moment. Atomic orbital χr has large value near atom r. Similarly, χs
has large value near s. Thus, the product χrχs can be of significant importance only in
the part of space near both r and s, i.e., in the region of the bond between r and s. It is
natural to define the concept of bond order. An electron in φi is considered to contribute
p(i)
rs := c(i)

r c
(i)
s to the π bond order between atoms r and s. This contribution, called the

partial π bond order between atoms r and s, is significant only if r and s are neighbours in
the Hückel graph (i.e., they are joined by a σ bond). The total π bond order (also called
the Coulson π bond order) between atoms r and s is defined as [43]:

P π
rs =

n∑
i=1

vip
(i)
rs =

n∑
i=1

vic
(i)
r c

(i)
s , (3.39)

and the total bond order is defined as

P σ+π
rs = P σ

rs + P π
rs. (3.40)

The bond order of a σ bond always equals 1, i.e., P σ
rs = 1, because the two electrons

that constitute the σ bond are considered to be constrained to the region between the two
bonded atoms.

Example 3.7. In ethene (see Figure 3.9) the coefficients are:

c
(1)
1 = c

(1)
2 = 1√

2 , c
(2)
1 = 1√

2 and c
(2)
2 = − 1√

2 .

In the ground state, v1 = 2 and v2 = 0. Therefore,

P π
1,2 = 2 · 1√

2 ·
1√
2 + 0 · 1√

2 ·
(
− 1√

2

)
= 1.
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This is only the π electron contribution to the bond order. The total bond order is

P σ+π
1,2 = P σ

1,2 + P π
1,2 = 2.

�

Example 3.8. In the ground state butadiene (see Figure 3.6) the contributions from in-
dividual obitals and the total bond orders are shown in Table 3.3. Suppose we excited an

bond
orbitals 1–2 2–3 3–4
φ1 0.2236 0.3618 0.2236
φ2 0.2236 −0.1382 0.2236

(φ1)2(φ2)2 0.8944 0.4472 0.8944
total bond order 1.8944 1.4472 1.8944

Table 3.3: Contributions to bond order from individual orbitals and the total bond orders.

electron from φ2 to φ3. Bond orders for this excited state of the butadiene are shown in
Table 3.4. If an electron is added to φ3 without taking anything from φ1 or φ2 this results

bond
orbitals 1–2 2–3 3–4
φ3 −0.2236 0.1382 −0.2236

(φ1)2(φ2)1(φ3)1 0.4472 0.7236 0.4472
total bond order 1.4472 1.7236 1.4472
(φ1)2(φ2)2(φ3)1 0.6708 0.5854 0.6708
total bond order 1.6708 1.5854 1.6708

Table 3.4: Bond orders in the first excited state of the butadiene and in the ionized state.

in (φ1)2(φ2)2(φ3)1 electron configuration. Bond orders for this configuration are also in
Table 3.4. �

Experimentally, it was observed that bond order is negatively correlated with bond length
(i.e., bonds with higher bond order are shorter). This confirms the physical significance of
the definition of bond order. (For more details see the plot in Figure 4-5 in reference [44]
and the discussion that accompanies the figure.)

In chemistry, there exists an old concept of partial valence (or resudial affinity). In
Hückel theory this corresponds to the quantitatively defined notion of free valence. Let us
first define the total bond number at r, denoted Nσ+π

r , as the sum of total bond orders for
all bonds that are incident to this atom:

Nσ+π
r :=

∑
s∈G(r)

P σ+π
rs =

∑
s∈G(r)

(P σ
rs + P π

rs) = dr +
∑

s∈G(r)

n∑
i=1

vic
(i)
r c

(i)
s . (3.41)
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The π bond number (also called the Coulson bond number), Nπ
r , is the sum of π bond orders

for the bonds rs for all carbon atoms s adjacent to r:

Nπ
r :=

∑
s∈G(r)

P π
rs =

∑
s∈G(r)

n∑
i=1

vic
(i)
r c

(i)
s . (3.42)

This formula for Nπ
r emphasises the rôle of neighbouring atoms: a large bond number for

atom r requires large MO coefficients on atom r but also on its neighbours s.

Example 3.9. In (ground state) butadiene:

Nσ+π
1 = Nσ+π

4 = 1.8944 and Nσ+π
2 = Nσ+π

3 = 1.8944 + 1.4472 = 3.3416.

This implies that atoms 1 and 4 are less deeply involved in bonding than atoms 2 and 3. �

Intuitively, lower bond number means that an atom has larger potential to participate in
reactions than an atom with a higher bond number. There exists a maximal bond number
that can be theoretically obtained. Let us denote it by Nσ+π

max . This values is widely stated
to be Nσ+π

max = 3 +
√

3 ≈ 4.7321. This seems a well established result, but its provenance is
very hard to track down. Hereinafter, we will devote a special chapter to this matter and
investigate it deeply. For now, let us assume that this values is indeed 3 +

√
3. The free

valence, denoted Fr, of atom r is defined as

Fr = Nσ+π
max −Nσ+π

r . (3.43)

This is regarded as “unused bonding” of the r-th atom.

Example 3.10. For (ground state) butadiene (in Figure 3.6):

F1 = F4 = Nσ+π
max −Nσ+π

1 = 4.7321− 1.8944 = 2.8377,
F2 = F3 = Nσ+π

max −Nσ+π
2 = 4.7321− 3.3416 = 1.3904.

In [44], Coulson also considered C–H bonds. Note that we only consider C–C bonds here,
i.e., bonds in the carbon skeleton. �

It was experimentally observed that there is a positive correlation between reaction rate
and free valence. (For more details see the plot in Figure 4-11 in reference [44].)

3.2.2 The Hückel “4p+ 2” Rule of Aromaticity and the Coulson-
Rushbrooke Theorem

Chemists of the early 20th century had noticed that ring systems with six π electrons are a
very stable species and they coined the term “aromatic sextet”. According to a legend, the
structure of benzene (see Figure 3.11) came to August Kekulé in a dream. Kekulé claimed
that in his dream he saw a snake gobbling its own tail. The name aromatic compound comes
from the fact that many of the compounds that were first isolated were highly fragrant
(they smelled pleasantly like vanilla, almond etc.). However, many of the presently known
aromatic compounds smell unpleasantly or have no odor at all. The “aromatic sextet”
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is just a special case of a more general rule which is called the Hückel “4p + 2” rule of
aromaticity. Hückel observed [111, 112, 113, 114] that planar cyclic π electron systems
with 4p+ 2 electrons, where p ∈ N, show pronounced stability.

Here, we explore planar monocyclic systems with chemical formula CnHn. The n carbon
atoms form a cycle, i.e., its Hückel graph is Cn. We have determined eigenvalues of Cn in
Section 2.6.1. Recall that the eigenvalues of Cn are λk = 2 cos

(
2kπ
n

)
for k = 0, . . . , n − 1.

Thus, energies of molecular orbitals are given by:

εk = α + 2β cos
(

2kπ
n

)
(3.44)

for k = 0, 1, . . . , n − 1. The lowest bonding orbital is obtained for k = 0 and its energy is
α + 2β. Non-bonding orbitals will arise exactly in case n is divisible by 4. Moreover, they
will appear in degenerate pairs. Figure 3.12 shows how n electrons are assigned to the n
molecular orbitals of the annulene CnHn.

The neutral cyclopropenyl radical C3H3
• has one electron in one of the two degenerate

anti-bonding orbitals. The system is expected to be more stable as the cyclopropenyl cation
C3H3

+ with just two π electrons.
Let us consider cyclobutadiene C4H4. In our idealised model there are two non-bonding

degenerate orbitals. It is known that in this case the Jahn-Teller type of distortion occurs
[35, 36]. The Jahn-Teller theorem predicts that degenerate electronic states in (non-linear)
molecules give rise to (symmetry-lowering) distortions which remove the intial degeneracy.
Under this distortion one of the orbitals has slightly higher energy than α, and the other
one has slightly lower energy than α. Note that the HOMO-LUMO gap is small in this
case. One way or another (if we stick with our model), C4H4 is unstable.

Consider the neutral cyclopentadienyl radical C5H5
•. In Figure 3.12, we can see that

there is still room for one more electron in the boding molecular orbitals. Therefore, the
system would be more stable as cyclopentadienyl anion C5H5

– , i.e., the stable number of
electrons in this system is 6.

System C6H6 is the classic benzene example (see Figure 3.11). In the neutral configura-
tion the bonding molecular orbitals are completely filled.

In the neutral cycloheptatrienyl radical C7H7
•, one electron goes to an anti-bonding level

(as in the case of C3H3
•). This electron can easily be removed to obtain cycloheptatrienyl

(a) (b)

Figure 3.11: The benzene molecule and its structural formula.
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Figure 3.12: π electron energy levels in CnHn for n = 3, 4, . . . , 8.

cation C7H7
+ which has 6 electrons.

The cyclooctatetraene system with molecular formula C8H8 is similar to C4H4. We can
now see how this consideration can be generalised to [n]annulene CnHn for any n ≥ 3.
There are four cases:
(i) n = 4p: this system is unstable due to two degenerate non-bonding orbitals;
(ii) n = 4p + 1: this system has room for one more electron in the bonding MOs and is

more stable as CnHn
– ;

(iii) n = 4p+ 2: the bonding MOs are completely filled;
(iv) n = 4p + 3: one electron is in an anti-bonding molecular orbital and the system is

more stable as CnHn
+.

One of the foundations of the Hückel theory is the dichotomy between alternant and non-
alternant conjugated hydrocarbons. The starring process in chemistry asks us to place stars
on certain carbon-centres. The atoms are divided into two groups, starred and unstarred,
such that no atom of one group is adjacent to another atom from the same group. This
process is precisely 2-colouring of the Hückel graph. Bipartite hydrocarbons are called
alternant hydrocarbons and non-bipartite hydrocarbons are called non-alternant.

Theorem 3.1 (Coulson-Rushbrooke Theorem, [44]). In an alternant hydrocarbon the fol-
lowing statements hold:
(i) Molecular orbital energy levels are symmetrically paired about the zero energy level α,

i.e., if εi = α + λβ then εn−i+1 = α− λβ.
(ii) The LCAO coefficients of any pair of orbitals (orbitals of energy α+ λβ and α− λβ)

are identical apart from a change of sign in the coefficients of the atomic orbitals on
the unstarred atoms.

(iii) In a neutral hydrocarbon, atomic charges Qr on carbon-atoms are, in the ground state,
all precisely unity.

Proof. Statements (i) and (ii) from Theorem 3.1 are nothing more than Proposition 2.13,
rewritten in the languege of the Hückel theory.
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Let us prove the third statement. Rewrite equation (3.24) as

Hc(i) = εic(i) (i = 1, . . . , n). (3.45)

We added index i since there are n molecular orbitals. Equations (3.45) can be combined
in one matrix equation

HC = EC, (3.46)

where C =
[
c(1) c(2) . . . c(n)

]
and

E =


ε1 0 · · · 0
0 ε2

. . . ...
... . . . . . . 0
0 · · · 0 εn

 .

Recall that LCAO coefficients are normalised and orthogonal, i.e.,(
c(i)

)ᵀ
c(i) = 1 and

(
c(i)

)ᵀ
c(j) = 0 (i 6= j). (3.47)

These two equations can be combined into (using the Kronecker δ notation):(
c(i)

)ᵀ
c(j) = δij (1 ≤ i, j ≤ n). (3.48)

In the matrix form this is CᵀC = In×n. It follows that Cᵀ = C−1, i.e., C is an orthogonal
matrix. From CCᵀ = In×n we obtain:

n∑
i=1

(
c(i)
r

)2
= 1 (r = 1, . . . , n). (3.49)

Note that (3.49) holds in general (for both alternant and non-alternant hydrocarbons).
Let us now assume that the hydrocarbon under consideration is alternant. Suppose

that it has k bonding orbitals. By (i), there are k corresponding anti-bonding orbitals. It
is clear that k ≤ n

2 . There are also n − 2k non-bonding orbitals. In a neutral alternant
hydrocarbon, in the ground state, all its bonding orbitals are doubly occupied and the
n−2k degenerate non-bonding orbitals are singly occupied. From (3.38) it follows that (we
know from (ii) that c(i)

r = c(n−i+1)
r or c(i)

r = −c(n−i+1)
r ):

Qr = 2
k∑
i=1

(
c(i)
r

)2
+

n−k∑
i=k+1

(
c(i)
r

)2

=
k∑
i=1

(
c(i)
r

)2
+

k∑
i=1

(
c(i)
r

)2
+

n−k∑
i=k+1

(
c(i)
r

)2

=
k∑
i=1

(
c(i)
r

)2
+

n∑
i=n−k+1

(
c(i)
r

)2
+

n−k∑
i=k+1

(
c(i)
r

)2
=

n∑
i=1

(
c(i)
r

)2
= 1.

(3.50)
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Theorem 3.1 is also known as the Pairing Theorem [132]. Example 3.11 shows that The-
orem 3.1 does not apply to non-alternant hydrocarbons. It does not apply to anions and
cations. Moreover, it does not apply to excited states, except if excitation takes place
from one orbital to its complementary counterpart. Note that, as a consequence of Theo-
rem 3.1, Eπ and EG are equal for the ground state configurations of bipartite graphs and
λHOMO = −λLUMO.
Example 3.11. Consider the pentalene molecule. Its structural formula is in Figure 3.13.
It is clearly a non-alternant hydrocarbon. Its eigenvalues are:

(a) Structural formula (b) Hückel graph

Figure 3.13: Structural formula of pentalene and its skeleton graph.

λ1 ≈ 2.3429, λ2 ≈ 1.4142, λ3 = 1, λ4 ≈ 0.4707,
λ5 = 0, λ6 ≈ −1.4142, λ7 ≈ −1.8136, λ8 = −2.

We can see that λ1 6= −λ8, λ2 6= −λ7, λ3 6= −λ6 and λ4 6= −λ5, so statement (i) of
Theorem 3.1 clearly does not hold. The LCAO coefficients that correspond to the orbitals
of the lowest and the highest energy are:

c(1) ≈
[
0.3179 0.2714 0.3179 0.4735 0.4735 0.3179 0.2714 0.3179

]
,

c(8) ≈
[
0.2887 0.0000 −0.2887 0.5774 −0.5774 0.2887 0.0000 −0.2887

]
.

Those coefficients are clearly not identical up to change of sign. There is no way to apply
statement (ii) of Theorem 3.1, because the starring process cannot be performed. In the
ground state, the electron configuration of pentalene is (φ1)2(φ2)2(φ3)2(φ4)2. Atomic charges
on carbon atoms are:

Q1 ≈ 0.8146, Q2 ≈ 1.1732, Q3 ≈ 0.8146, Q4 ≈ 1.1976,
Q5 ≈ 1.1976, Q6 ≈ 0.8146, Q7 ≈ 1.1732, Q8 ≈ 0.8146.

None of the atomic charges equals 1, so statement (iii) of Theorem 3.1 also does not hold.
Note that Eπ = EG in this example. This follows from the general fact of spectral graph
theory that ∑n

i=1 λi = 0, because in the case of pentalene bonding molecular orbitals are
doubly occupied and all the other orbitals are unoccupied, i.e.,

λHOMO ≈ 0.4707 and λLUMO = 0.

�
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3.3 Fullerenes
Fullerene graphs are an important class of chemical graphs. Here, we will only give some
of their basic properties. For an in-depth treatment of fullerenes the reader is referred to
monograph [70]. For an overview of the recent developments in this field, the reader can
consult the survey paper by Schwerdtfeger et al. [186].

Carbon can form many allotropes7 among which diamond and graphite are known for
a long time. Recently, another allotrope called graphene has received a lot of attention; it
has the form of the infinite hexagonal lattice. Fullerenes are closed carbon-cage molecules
that contain only pentagonal and hexagonal rings. Each C atom is bonded to exactly 3
other C atoms. Kroto, Heath, O’Brien, Curl and Smalley performed the laser vaporisation
experiment on graphite. There was a pronounced mass peak at C60 and a slightly less
pronounced mass peak at C70. The paper by Kroto et al. [127] which appeared in 1985
proposed the structure of the C60 molecule with icosahedral symmetry which is known as
Buckminsterfullerene (also known as the buckyball). It is the most famous fullerene. Their
paper initiated the wide reasearch of fullerenes. Kroto, Smalley and Curl were awarded the
1996 Nobel Prize in Chemistry for discovery of fullerenes. In 1984 Rohlfing et al. [180] also
performed the laser vaporisation on graphite. In this experiment, they obtained a mass
spectrum (carbon cluster mass distribution) which showed that for n ≥ 40 there are only
Cn clusters for even values of n. This was another empirical evidence that was in favour
of the fullerene hypothesis, which predicts that these carbon clusters have the structure of
fullerenes.

The first mathematical model that one may consider to describe a fullerene is a convex
polyhedron: atoms correspond to vertices of the polyhedron, bonds correspond to edges
of the polyhedron and rings correspond to its faces. Fullerenes can be modelled with
those trivalent polyhedra that contain only pentagonal and hexagonal faces. An equivalent
approach is via graph theory:

Definition 3.1. A fullerene graph is a planar cubic 3-connected graph that contains only
pentagonal and hexagonal faces (including the outer face).

The following theorem tells us that the two representations are essentially equivalent (if we
are only concerned with the combinatorial structure and not with geometry):

Theorem 3.2 (Steinitz’s Theorem, Theorem 4.1 in [162]). The 1-skeleton of an arbitrary
convex polyhedron in R3 is a planar 3-connected graph, and each planar 3-connected graph
is polyhedral, i.e., it is a 1-skeleton of convex polyhedron in R3.

The combinatorial structure of the polyhedron is recoverable from the graph by Whitney’s
Theorem (Theorem 2.9).

Let the number of vertices, edges and faces of a fullerene graph be denoted by n, e and
f , respectively. Equation (2.7) (i.e., Euler’s formula) in this notation is

n− e+ f = 2. (3.51)
7The IUPAC “Gold Book” [138] defines allotropes as different structural modifications of an element,

i.e., the atoms of the element are bonded together in a different way (in the same state of matter).
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As a fullerene graph is 3-regular it follows that

e = 3n
2 . (3.52)

We immediately see that fullerene graphs can exist only for even values of n. From (3.51)
and (3.52) it also follows that

f = n

2 + 2. (3.53)

Let f5 and f6 denote the number of pentagonal and hexagonal faces, respectively. Note
that

f = f5 + f6 = n

2 + 2. (3.54)

From equation (2.5) it follows that

5f5 + 6f6 = 2e = 3n. (3.55)

From equations (3.54) and (3.55) it immediately follows that

f5 = 12 and f6 = n

2 − 10. (3.56)

Note that the plane dual of a fullerene graph is a triangulation (i.e., a plane graph where
all faces are triangles) with 12 degree-5 vertices and n

2 − 10 degree-6 vertices. There exists
at least one fullerene graph for each even number n ≥ 20 with the exception of n = 22.
The smallest fullerene graph is the skeleton of the dodecahedron (see Figure 3.14(a)); it is

(a) Ih symmetry, n = 20 (b) D6d symmetry, n = 24 (c) D3h symmetry, n = 26

(d) Td symmetry, n = 28 (e) D2 symmetry, n = 28

Figure 3.14: All fullerene graphs on n ≤ 28 vertices. Inner pentagonal faces are shaded.

the only one with 20 vertices. There is also only one fullerene graph with 24 vertices (see
Figure 3.14(b)) and only one with 26 vertices (see Figure 3.14(c)). There are two fullerene
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graphs with 28 vertices (see Figure 3.14(d) and Figure 3.14(e)). Their number increases
rapidly beyond that point. More precisely, the number of non-isomorphic fullerene graphs
on n vertices is of the order of n9 [183].

A special class of fullerenes are the IPR fullerenes. In an IPR (Isolated Pentagon Rule)
fullerene no two pentagons share an edge. Using various methods from quantum mechanics,
Albertazzi et al. [2] provided evidence that IPR fullerenes are chemically very stable. Let
us slightly refine this concept:

Definition 3.2. A PIP (Pentagonal Incidence Partition) of a fullerene F , denoted PIP(F),
is a partition of the number 12 which can be obtained in the following way. Take the subgraph
of the plane dual of the fullerene F that is induced on the degree-5 vertices. The orders of
connected components of the induced subgraph are the parts of the partition.

In other words, define a relation ≡ on the pentagonal faces of fullerene F such that p ≡ p
for every pentagonal face p and p ≡ q if pentagonal faces p and q share an edge. The
transitive closure of ≡ is an equivalence relation on the pentagonal faces of F . The sizes
of its equivalence classes are parts of the PIP. For every fullerene F with n ≤ 28 vertices
PIP (F) = 12. There are only 41 such fullerenes F with PIP(F) = 12. The largest of
them has 48 vertices (see Figure 3.15(a)). All fullerenes F with PIP (F) = 12 are listed
in Appendix A. The smallest fullerene F with PIP (F) = 6 + 6 is the fullerene on 30
vertices with D5h symmetry group (see Figure 3.15(b)). It is also the smallest fullerene

(a) D6d symmetry, n = 48 (b) D5h symmetry, n = 30

Figure 3.15: The figure on the left shows the largest fullerene F with PIP(F) = 12. The
figure on the right shows the smallest fullerene F with PIP(F) 6= 12.

with PIP(F) 6= 12. We can define IPR fullerenes using this notion:

Definition 3.3. Fullerene F is an IPR fullerene if

PIP(F) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
12

. (3.57)

The buckyball (see Figure 3.16(a)) is the smallest IPR fullerene. It has the structure of
truncated icosahedron (soccer ball with black pentagons and white hexagons). The second
smallest IPR fullerene has 70 vertices (see Figure 3.16(b)). Their claimed stability would
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(a) Ih symmetry, n = 60 (b) D5h symmetry, n = 70

Figure 3.16: Buckyball (on the left) is the smallest IPR fullerene. The fullerene on the
right has 70 vertices and is the second smallest IPR fullerene.

explain why in the laser vaporisation experiment the two pronounced peaks in the mass
spectrum appeared at n = 60 and n = 70.

Let us consider symmetries of fullerenes. In principle, there are four groups that can be
associated with a fullerene.

The combinatorial symmetry group is the automorphism group of the fullerene graph.
Recall that by our definition (Definition 3.1), the fullerene graph is a planar graph and not
a plane graph (i.e., the embedding is not given in advance).

Since a fullerene can be embedded into a sphere, we may consider it as a combinatorial
surface and model it with a map. The topological symmetry group is the symmetry group
of the map (an automorphism of a map is a permutation of vertices, edges and faces of
the map which preserves adjacency). In general, a map may have lower symmetry than its
1-skeleton.

As we have already seen, a fullerene can also be modeled as a convex polyhedron. This
structure posesses even more information than the map alone. The geometrical symmetry
group is the point group of the polyhedron with the highest symmetry among all polyhedra
that represent a given fullerene, i.e., the maximally symmetric 3D embedding of the fullerene
graph. Such a polyhedron always exists (see Theorem 3.3). This does not hold for maps
in general. There exist maps which can not be realised in the 3D space such that the 3D
object would exhibit all symmetries of the corresponding map. By Mani’s Theorem, which
we will present shortly, all three types of symmetry groups discussed so far are isomorphic
(as abstract groups) in the realm of fullerenes. Among the three, we will only consider the
last one and call it the ideal symmetry group.

The fourth is the physical symmetry group which is the point group of the physical
molecule. The shape of the actual molecule is often different from the ideal one due to the
Jahn-Teller effect and other distortions of physical nature.

We will now consider the ideal symmetry group. Because fullerenes are trivalent and
comprise of pentagonal and hexagonal rings, they can have n-fold rotational symmetry
axis only if n ∈ {1, 2, 3, 5, 6} [68]. On the other hand a fullerene is a finite non-linear
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molecule and hence only finite subgroups of the O(3) are admissible ideal symmetry groups.
Therefore, among all point groups discussed in Section 2.4 only 36 of them are possible for
fullerenes, namely:

C1,Ci,Cs,Cn,Cnh,Cnv,S2n,Dn,Dnh,Dnd,T,Th,Td, I and Ih, (3.58)

where n ∈ {2, 3, 5, 6}. A subgroup of the symmetry group of an object is also referred to as
symmetry group of that object. In this context, the largest symmetry group is called the full
symmetry group. It was shown in [71] that C5, C5h, C5v and S10 occur only as subgroups
of D5h, D5d, D5, I or Ih and never as full symmetry groups. Similarly, groups C6,C6h,C6v
and S12 occur only as subgroups of D6, D6h or D6d. The list of possible symmetries is thus
reduced to 28 point groups. They are all listed in Table 3.5 together with their orders.

Point group Order
C1 1
Ci 2
Cs 2
C2 2
C3 3
C2h 4
C2v 4
S4 4
D2 4
C3h 6
C3v 6
S6 6
D3 6
D2h 8

Point group Order
D2d 8
D5 10
D6 12
D3h 12
D3d 12
T 12

D5h 20
D5d 20
D6h 24
D6d 24
Th 24
Td 24
I 60
Ih 120

Table 3.5: All 28 possible symmetry groups for fullerenes.

One way to determine the symmetry group is by finding a maximally symmetric 3D
embedding. A nice embedding of a fullerene graph into the space R3 can be obtained by
using the algorithm described in the paper by Manolopoulos and Fowler [69]. First, one has
to find three molecular orbitals which have only one nodal plane (i.e., one negative and one
positive lobe). Let us describe this in graph-theoretical terms. Let λ1 > λ2 ≥ · · · ≥ λn be
the eigenvalues of the fullerene graph under consideration and let c(1), c(2), . . . , c(n) be their
corresponding eigenvectors. Consider an eigenvector c(k). Let us partition the vertices
of the fullerene graph into three sets, black, gray and white, according to whether their
corresponding coefficients in c(k) are positive, zero or negative, respectively. The molecular
orbital has only one nodal plane if it is not the orbital with the lowest energy and the
following two conditions hold:

(i) The subgraph induced on white vertices is connected and the subgraph induced on
black vertices is connected.
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(ii) After all black vertices with at least one white neighbour and all white vertices with
at least one black neighbour are removed, the two subgraphs induced on white and
black vertices are both connected.

In [69], Manolopoulos and Fowler noticed that there exist exactly three such molecular
orbitals. Let 1 < kx < ky < kz ≤ n be the indices of the three such orbitals. Define
sx = (λ1 − λkx)−

1
2 , sy = (λ1 − λky)−

1
2 and sz = (λ1 − λkz)−

1
2 . Then the coordinates of the

i-th vertex can be obtained as:

(xi, yi, zi) =
(
c

(kx)
i sx, c

(ky)
i sy, c

(kz)
i sz

)
. (3.59)

By considering symmetry operations of this embedding, one can assign a unique point group
to a fullerene graph. Graph drawing methods based on eigenvectors were further studied
by Pisanski et al. [76, 128, 163]. See also the paper [50] by Cvetković et al.

Theorem 3.2 shows us how 3-connected planar graphs on one side and 1-skeleta of
convex polyhedra on the other side are related. It is clear that a symmetry operation of a
polyhedron induces an automorphism of the graph that corresponds to its 1-skeleton. By
the following theorem of Mani [133], the converse is also true:

Theorem 3.3 (Mani’s Theorem, Theorem 3.5 in [193]). Let G be a 3-connected planar
graph. Then there exists a convex polyhedron P in R3 such that G is the 1-skeleton of P
and Aut(G), i.e., the full automorphism group of graph G, is displayed by P (i.e., every
automorphism of G induces a symmetry operation on P ).

Theorem 3.3 tells us that a fullerene graph can not posesses a “hidden symmetry”. Thus,
the point group can also be determined in a purely combinatorial manner without having to
obtain a 3D embedding of the fullerene. This algorithm is described in a paper by Myrvold,
Fowler et al. [153].

To obtain a physically accurate embedding, time consuming quantum mechanical cal-
culations can be used. In practice, force field optimisation techniques are preferred, which
are computationally much less demanding and still yield good results. The first force-field
for fullerenes with four parameters was designed by Wu et al. [200]. In following years
several refinements were published by various authors. In the software package named
Fullerene [185], a 22-parameter force field is implemented. This software can be obtained
from http://ctcp.massey.ac.nz/index.php?page=fullerenes free of charge (for non-
commercial use).

3.3.1 Generating fullerenes
The first algorithm for generating fullerenes was the spiral algorithm which is described
in [70]. The idea resides in the paper by Manolopoulos, May and Down [135]. They
noticed that many fullerene structures can be “peeled like an orange”. More precisely, they
conjectured the following:

Conjecture 3.1 (The Spiral Conjecture, Conjecture 2.1 in [70]). The surface of a fullerene
polyhedron may be unwound in a continuous spiral strip of edge-sharing pentagons and
hexagons such that each new face in the spiral after the second shares an edge with both:
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(a) its immediate predecessor in the spiral and

(b) the first face in the preceding spiral that still has an open edge.

�

Figure 3.17: A spiral of the buckyball.

An example of a spiral is shown in Figure 3.17. Later, it turned out that the spiral con-
jecture is false [134, 202, 203, 27]. The smallest unspiralable fullerene has 380 vertices
[29]. In 1995 Brinkmann and Dress developed an efficient generator which is called full-
gen [26]. In 2012 Brinkmann, Goedgebeur and McKay developed a faster generator which
is called buckygen [28]. In a recent paper by Goedgebeur and McKay [81] an even faster
algorithm was developed for generating the class of IPR fullerenes. It was incorporated
in the buckygen program. Both fullgen and buckygen are part of the CaGe pack-
age [24] which can be obtained free of charge from https://caagt.ugent.be/CaGe/ or
https://www.math.uni-bielefeld.de/~CaGe/. For our needs the fullgen program is
sufficient. Planar embeddings of all fullerene graphs that are shown on figures in this
section were obtained by the embed program, which can be found in the CaGe package.

3.4 Kekulé structures
In the early considerations of electronic structure of conjugated π systems, a molecule was
thought of as having localised double bonds. A classic example is the naphthalene molecule
whose structural formula is in Figure 2.12. Note that every C atom in naphthalene is
involved in precisely one double bond. But this single valence-bond structure does not
accurately represent the state of the molecule. In the so called “resonance theory”, the
electronic structure is represented by a combination of several distinct valence-bond struc-
tures. The molecule is then said to resonate among these structures or to have a structure
that is a hybrid of these valence-bond structures. The naphthalene molecule has three
distinct such structures (see Figure 3.18).
A Kekulé structure is a valence-bond structure in which every C atom is involved in exactly
one double bond. A Kekulé structure is a synonym for a perfect matching alias 1-factor in
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the Hückel graph of the molecule. Our approach to this subject is purely mathematical. It
should give the necessary mathematical rigor to the treated concepts in order to clarify to
what extent the mathematical model reflects reality. However, we give sufficient translation
to the language of mathematical chemistry. The theory of matchings in graphs has been
widely studied. The book by Lovász and Plummer [166] is an excellent reference.

Definition 3.4. A matching F in a graph G is any subset of mutually non-incident edges.
A matching F is called a perfect matching if every vertex of G is an end vertex of some
member of F . The cardinality of set F is called the size of the matching.

Even though a perfect matching is a formal mathematical concept and a Kekulé structure
is a chemical notion, we often refer to perfect matching as Kekulé structures. A maximum
matching is a matching that contains the largest possible number of edges. In other words,
F is a maximum matching in G if |F ′| ≤ |F | for every matching F ′ in G. The size of the
maximum matching in a graph G is known as the matching number , denoted ν(G). Note
that only graphs of even order may possess a perfect matching and that |F | = ν(G) = |V (G)|

2
if F is a perfect matching of G. Also note that every cycle graph of an even order has exactly
2 perfect matchings.

Let F be a perfect matching of G and e = uv ∈ E(G). If e ∈ F then F \{e} is a perfect
matching in G− uv. If e /∈ F then F is a perfect matching in G− e.

Definition 3.5. The Kekulé number of a graph G, denoted K = K(G), is the number of
distinct perfect matchings in G.

The set of all perfect matchings will be denoted as {F1, F2, . . . , FK}. A graph possessing
a perfect matching is called Kekulean. The phenantherene graph is Kekulean; its Kekulé
number is five and the five of its Kekulé structures are shown in Figure 3.19.

Determining whether a given graph G is Kekulean can be done in polynomial time. The
algorithm for determining the matching number ν(G) of a bipartite graph G can be found
in any standard reference on algorithms (see e.g. [38]). Let ~G be a directed graph associated
with G, such that every arc is directed from a black vertex to a white vertex (where black
and white vertices are the bipartition of the graph G). Let us add another two vertices
labeled s and t to the digraph ~G. They are called the source and the sink, respectively.
For every black vertex v add an arc from s to v and for every white vertex w add an arc
from w to t. The resulting digraph ~Gn for the naphthalene graph Gn is in Figure 3.20. We
say that an arc (u,w) ∈ A(~G) leaves u and enters w. Let δ+(u) denote all arcs that enter
vertex u and let δ−(u) denote all arcs that leave vertex u. An (s, t)-flow F in ~G is a subset

(a) (b) (c)

Figure 3.18: The three distinct valence-bond structures of naphthalene.
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(a) F1 (b) F2 (c) F3 (d) F4

(e) F5

Figure 3.19: The five Kekulé structures Fi, 1 ≤ i ≤ 5, of the phenanthrene graph Gp. Its
Kekulé number K(Gp) is 5.

of arcs, such that
|δ+(u) ∩ F| = |δ−(u) ∩ F| (3.60)

for all u ∈ V (~G)\{s, t}. The number |δ−(s)∩F| = |δ+(t)∩F| is called the value of flow F .
The flow of maximum value can be found in polynomial time by using the Ford-Fulkerson
method. The Push-relabel algorithm due to Goldberg and Tarjan can be implemented in
O(|V (G)|2

√
|E(G)|) time. There exist more sophisticated algorithms with even better time

complexity; for an overview see reference [124]. The value of the maximum flow in ~G is
precisely the size of the maximum matching in G. A maximum flow in the digraph that
corresponds to the naphthalene graph Gn is in Figure 3.21. Maximum matching in a gen-
eral (not necessarily bipartite) graph can also be found in polynomial time by using the
Edmonds’ matching algorithm [124] which is among the more involved algorithms in com-
binatorial optimisation. In book [124] by Korte and Vygen one can find an implementation
which runs in O(|V (G)|3) time. In mathematical chemistry, one often needs to determine
the Kekulé number of a graph or compile a list of all Kekulé structures. However, the enu-
meration problem (i.e., determining the Kekulé number) for perfect matchings in general
graphs (even in bipartite) is NP-hard. In [154] Pauling writes: “A few minutes suffice to
draw the four unexcited structures for anthracene, the five for phenanthrene, or the six for

Figure 3.20: Digraph ~Gn that is associated to the naphthalene graph Gn.
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Figure 3.21: The maximum flow in ~Gn. The arcs that belong to the flow are coloured
magenta. The associated matching corresponds to the Kekulé structure in Figure 3.18(b).

pyrene and to determine the bond numbers of the various bonds; an hour or two might
be needed for the 110 structures of tetrabenzoheptacene.” For pictures of the mentioned
benzenoids, see Figures 5.4 and 5.5. Of course, Pauling was referring to the pen and paper
approach. But even a modern computer would not suffice to count (in a reasonable amount
of time) the Kekulé structures of a fullerene on, say, 100 vertices by a brute force search.
It therefore makes sense:

(i) To seek special classes of graphs for which the enumeration problem can be solved in
polynomial time.

(ii) To seek good lower and upper bounds on the Kekulé number.

(iii) To seek faster (or simpler) algorithms for special classes of graphs to decide if a graph
is Kekulean.

3.4.1 Determinants and Kekulé structures
Determinants are an essential tool in linear algebra. Recall that the determinant of an n×n
matrix A = [aij]ni,j=1 is defined as

detA =
∑
π∈Sn

sgn(π)
n∏
i=1

ai,π(i), (3.61)

where Sn is the set of all permutations on {1, 2, . . . , n} and sgn(π) is the sign of permutation
π. The permanent of an n× n matrix A is defined as

perA =
∑
π∈Sn

n∏
i=1

ai,π(i). (3.62)

Permanents are less known than determinants. Note that the definition of a permanent is
very similar to that of a determinant. The only difference is that the sgn(π) factor is missing
in the equation (3.62). From the computational point of view, there is a huge difference
between permanents and determinants, because the permanent is much more difficult to
evaluate than determinant. The determinant of an n × n matrix can be evaluated in
O(n3) time by simple Gaussian elimination or the LU decomposition in which the diagonal
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elements of L are all 1, while the value of the determinant is the product of the diagonal
elements of matrix U (see reference [55] for details on the LU decomposition). However,
the evaluation of a permanent is a NP-hard problem.

Let G be a bipartite graph and let V (G) = V1 t V2 be the bipartition. It is clear that
a Kekulé structure in graph G may exist only if |V1| = |V2|. Let V1 = {v1, v2, . . . , vm} and
V2 = {w1, w2, . . . , wm}. The matrix B(G) = [bij]mi,j=1 where

bij =

1, if vi ∼ wj;
0, otherwise.

(3.63)

is called the biadjacency matrix of the bipartite graph G. (We have already encountered
the biadjacency matrix in Section 2.6.) The determinant of B(G) is

detB(G) =
∑
π∈Sm

sgn(π)
m∏
i=1

bi,π(i). (3.64)

Every non-zero term in the expansion of detB(G) corresponds to a Kekulé structure in
G. If G is non-Kekulean then detB(G) = 0, but the converse is not true. The non-zero
terms in the expansion are either 1 or −1 and they may cancel each other (as in the case
of complete bipartite graphs Kn,n for n ≥ 2). On the other hand, it is clear that

K(G) = perB(G) (3.65)

for a bipartite graph G.
Let xe be a formal variable for each edge e ∈ E(G). Define the variable biadjacency

matrix B̃(G) = [bij]mi,j=1 where

bij =

xe, if e = viwj;
0, otherwise.

(3.66)

The determinant det B̃(G) is a polynomial in variables xe, e ∈ E(G). It is clear that the
terms in the expansion of det B̃(G) are in one-to-one correspondence with Kekulé structures
of G and we obtain:
Proposition 3.4 (Theorem 8.2.1 in [166]). A bipartite graph G is Kekulean if and only if

det B̃(G) 6= 0. (3.67)

�

Determinants with formal variables can also be used for non-bipartite graphs. An orienta-
tion ~G of a graph G is a digraph that can be obtained from G by choosing a direction on
every edge of G (and thus turning it into an arc). Let ~G be any orientation of G and let
xe be a formal variable associated with e ∈ E(G). Let V (G) = {v1, v2, . . . , vn}. Define the
variable skew adjacency matrix Ã(G) = [aij]ni,j=1 where

aij =


xe, if e = (vi, vj);
−xe, if e = (vj, vi);
0, otherwise.

(3.68)
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If graph G is bipartite such that V1 = {v1, v2, . . . , vm} and V2 = {vm+1, vm+2, . . . , v2m},
where V (G) = V1 t V2 is the bipartition, then the matrix Ã(G) can be expressed as

Ã(G) =
[

0m×m B̃(G)
−B̃(G) 0m×m

]
. (3.69)

From equation (3.69) it follows that

det Ã(G) = (det B̃(G))2. (3.70)

Note that equation (3.70) does not make sense if graph G is not bipartite (the matrix B̃(G)
is not defined).

Matrix A is a skew symmetric matrix if −A = Aᵀ. Note that the variable skew adjacency
matrix Ã(G) defined above is a skew symmetric matrix. Let A be a skew symmetric 2m×2m
matrix. Let P = {{i1, j1}, {i2, j2}, . . . , {im, jm}} be a partition of {1, 2, . . . , 2m} into blocks
of size 2. Define

aP = sgn
(

1 2 . . . 2m− 1 2m
i1 j1 . . . im jm

)
m∏
k=1

bik,jk .

The Pfaffian of matrix A, denoted pf A, is defined as

pf A =
∑
P∈Pm

aP , (3.71)

where Pm is the family of all partitions of {1, 2, . . . , 2m} into blocks of size 2. From linear
algebra it is known [152] that if A is a skew symmetric matrix then

detA = (pf A)2. (3.72)

Consider the Pfaffian pf Ã(G). Note that every non-zero term aP in pf Ã(G) corresponds
to a Kekulé structure of G. The following proposition is a generalisation of Proposition 3.4
for general graphs:

Proposition 3.5 (Theorem 8.2.3 in [166]). A graph G is Kekulean if and only if

det Ã(G) 6= 0. (3.73)

�

It turns out that this theory can be used to count the number of Kekulé structures in graphs
of certain families. Let V (G) = {v1, v2, . . . , vn} and let ~G be any orientation of G. The
skew adjacency matrix of ~G is an n× n matrix S(~G) = [sij]ni,j=1 where

sij =


1, if (vi, vj) ∈ A(~G);
−1, if (vj, vi) ∈ A(~G);
0, otherwise.

(3.74)
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Each term in pf S(~G) is either 1, −1 or 0. The non-zero terms are in one-to-one corre-
spondence with the Kekulé structures of G. If F is a Kekulé structure then the sign of F ,
denoted sgnF , is the corresponding term in the Pfaffian. It is clear that

| pf S(~G)| ≤ K(G). (3.75)

The terms in pf S(~G) may cancel each other, but if all the terms have the same sign then the
equality in (3.75) is obtained. If | pf S(~G)| = K(G) then the digraph ~G is called Pfaffian.
If there exist an orientation ~G then the graph G is also called Pfaffian. If we can find a
Pfaffian orientation then we will also be able to count the number of Kekulé structures.
The following theorem is crucial for this purpose. Before we can state it we need a few
definitions.

Definition 3.6. Let F be a matching in G. An F -alternating cycle is a cycle on which
edges that belong to matching F and edges that do not belong to matching F alternate.

Definition 3.7. A cycle C in G is nice if G− V (C) contains a Kekulé structure.

Example 3.12. Let G be the graph in Figure 3.22 and let F be one of its Kekulé structures
(edges of F are coloured magenta in the figure). Let

Figure 3.22: A Kekulean graph G and one of its Kekulé structures F (coloured magenta).

C(1) = (1, 2, 6, 10, 14, 13, 9, 5, 1),
C(2) = (3, 4, 8, 12, 16, 15, 11, 7, 3),
C(3) = (2, 3, 7, 11, 15, 14, 10, 6, 2).

Cycles C(1) and C(2) are both F -alternating, whilst, the cycle C(3) is not. All the cycles
listed above are nice. An example of a cycle which is not nice is

C(4) = (1, 5, 6, 10, 11, 15, 16, 12, 8, 4, 3, 2, 1).

Definition 3.8. Let C be a cycle of even length in G. Choose an arbitrary direction and
while traversing the cycle C, count the number of arcs in ~G that agree with the direction of
the traversal. The cycle C is evenly oriented with respect to ~G if it has an even number of
arcs oriented in the direction of the traversal, otherwise it is called oddly oriented.
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Now we are ready to state the theorem:

Theorem 3.6 (Theorem 8.3.2 in [166]). Let G be a graph with an even number of vertices
and let ~G be an orientation of G. Then the following statements are equivalent:
(a) ~G is a Pfaffian orientation of G.
(b) Every Kekulé structure of G has the same sign with respect to ~G.
(c) Every nice cycle in G is oddly oriented with respect to ~G.
(d) If G has a Kekulé structure then for some Kekulé structure F , every F -alternating

cycle is oddly oriented with respect to ~G.
�

Just as graph, digraphs can also be embedded in the plane (see Figure 3.23 for an example).
A clockwise facial walk of a face f in a plane digraph is a cyclic sequence of arcs that are

Figure 3.23: A plane digraph with 5 vertices, 6 arcs and 3 faces.

encountered when the boundary of the face is traversed in the clockwise direction. For
example, the clockwise facial walk of face f2 of the digraph in Figure 3.23 is the sequence
((3, 4), (5, 3), (5, 4)). The clockwise facial walk of face f1 is the same digraph is the sequence
((4, 1), (1, 2), (1, 2), (3, 1), (3, 4)). An arc can be traversed in its own direction or in the
opposite direction. Those arcs in the sequence that are traversed in their own direction
are called properly oriented with respect to the face. In the clockwise facial walk of face f2
only the arc (5, 4) is properly oriented. Note that an arc can be traversed more than once
in a facial walk. In the above facial walk of f1 only the first occurrence of (1, 2) is properly
oriented, whilst the second is not. We can now state the following lemma:

Lemma 3.7 (Lemma 8.3.3 in [166]). Let ~G be a connected plane digraph such that every
bounded face has an odd number of properly oriented arcs in its clockwise facial walk. Then
in every cycle C (which is not necessarily directed) the number of arcs that are oriented
clockwise is of the opposite parity to the number of vertices of ~G inside the cycle and,
consequently, the digraph ~G is Pfaffian. �

The next theorem is an important result, because it implies that the Kekulé number of
planar graphs (e.g. coronoids and fullerenes) can be found in polynomial time:

Theorem 3.8 (Kasteleyn’s Theorem, Theorem 8.3.4 in [166]). Every plane graph has a
Pfaffian orientation. Such an orientation can be found in polynomial time. �

Kasteleyn’s Theorem can be proved by induction on the number of edges with the help
of Lemma 3.7. The proof is constructive and it therefore gives rise to the algorithm for
obtaining such an orientation. We will describe it with an example.
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(a) G (b) (c)

(d) (e) (f) ~G

Figure 3.24: Steps in the algorithm for finding a Pfaffian orientation of a plane graph.

Example 3.13. Let G be the graph in Figure 3.24(a). Pick a rooted tree T in G∗ (i.e.,
in the plane dual of G) with the root in vertex f ∗0 which corresponds to the outer face f0
of G. Those edges e whose dual counterparts e∗ are not in E(T ) comprise a spanning tree
in G. Choose any orientation on those edges (see Figure 3.24(b)). Note that Lemma 3.7
holds trivially for trees (because trees have no bounded face).

While the tree T has at least one edge, keep doing the following procedure: Select a leaf
f ∗ of the tree T and remove f ∗ together with its incident edge e∗ from T . Convert edge e
(that corresponds to the edge e∗ that was just removed from T ) to an arc in such a way
that the face f will have an odd number of properly oriented edges.

In the end, a Pfaffian orientation of G will be obtained. This procedure is illustrated in
Figure 3.24. Now that we have obtained ~G, we can write down the matrix S(~G):

S(~G) =



0 1 0 0 1 −1
−1 0 −1 −1 0 0
0 1 0 −1 0 −1
0 1 1 0 0 1
−1 0 0 0 0 −1
1 0 1 −1 1 0


.

As matrix S(~G) is skew symmetric we have that (pf S(~G))2 = detS(~G) = 9 by equation
(3.72). Since ~G is a Pfaffian orientation it follows that K(G) = | pf S(~G)| = 3. The reader
can verify that there are indeed three distinct Kekulé structures in graph G. �

3.4.2 Matching polynomials
Let G be a graph and let p(G, k) denote the number of matchings of size k in G. Note that
p(G, 0) = 1 because an empty set of edges is a matching of size 0 by our definition. It is
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clear that p(G, 1) = |E(G)|. If graph G has even order then p(G, |V (G)|
2 ) = K(G). It is also

clear that p(G, k) = 0 for k > ν(G).

Definition 3.9. Let G be a graph and let n = |V (G)|. The matching polynomial of G,
denoted µ(G, x), is defined as

µ(G, x) =
bn/2c∑
k=0

(−1)kp(G, k)xn−2k. (3.76)

Let F be a matching in graph G. The number def(F ) = |V (G)| − 2|F | is called the defect
of matching G. It is the number of vertices of G not covered by the matching F . The
matching polynomial can be expressed as

µ(G, x) =
∑
F

(−1)|F |xdef(F ), (3.77)

where F in the above summation runs over all matching in G. Polynomial µ(G, x) is
also called acyclic polynomial [196] and matching defect polynomial [166] in the literature.
Another related polynomial is the matching generating polynomial, denoted g(G, x), which
is defined as

g(G, x) =
ν(G)∑
k=0

p(G, k)xk. (3.78)

The two polynomials are related by the identity

µ(G, x) = xng(G,−x−2). (3.79)

The next proposition gives a simple recurrence relation for the numbers p(G, k):

Proposition 3.9 (Lemma 8.5.1 in [166]). Let G be a graph and let uv ∈ E(G). Then

p(G, k) = p(G− uv, k) + p(G− u− v, k − 1) (3.80)

and
µ(G, x) = µ(G− uv, x)− µ(G− u− v, x). (3.81)

Proof. The matchings of size k can be partitioned into two disjoint subsets: (a) those that
include the edge uv and (b) those that do not. If uv does not belong to the matching
then all edges of the matching are in E(G− uv). The number of such matchings is exactly
p(G − uv, k). If uv does belong to the matching then the edges that are incident with uv
do not belong to the matching and it has the remaining k − 1 edges in E(G− u− v). The
matchings of size k− 1 in G−u− v are in one-to-one correspondence with those matchings
of size k in G that include the edge uv, thus there are p(G−u−v, k−1) such matchings and
the results follows. By the use of recurrence (3.80), obtaining equality (3.81) is a simple
exercise.

In the chemical literature, one can find the so-called method of fragmentation which is
attributed to Randić [174]. It is essentially a brute-force algorithm which directly follow
from Proposition 3.9. The next proposition is a generalisation of Proposition 3.9:



74 CHAPTER 3. CHEMICAL CONCEPTS VIA GRAPH THEORY

Proposition 3.10 (Lemma 8.5.2 in [166]). Let G be a graph and let u ∈ V (G). Let
G(u) = {v1, v2, . . . , vk} be the neighbourhood of vertex u. Then

µ(G, x) = xµ(G− u, x)−
k∑
i=1

µ(G− u− vi, x). (3.82)

�

The proof is very similar to that of Proposition 3.9. The matchings are first divided into: (a)
those that cover vertex u and (b) those that do not. Matchings from (a) are further divided
into k disjoint subsets depending on which of the edges uvi, i = 1, . . . , k, they contain.
The following theorem tell us that the matching polynomial is equal to the characteristic
polynomial in the case of a forest:

Theorem 3.11 (Mowshowitz [151], Theorem 8.5.3 in [166]). If G is a forest then

µ(G, x) = pG(x), (3.83)

where pG(x) is the characteristic polynomial of graph G.

Unfortunately, Theorem 3.11 does not hold for general graphs. In Section 2.6 we have
seen that roots of the characteristic polynomial of an undirected graph are real numbers.
The roots of the matching polynomial could, in principle, be any complex numbers. The
following proposition tells us that this is not the case:

Proposition 3.12 (Corollary 8.5.7 in [166]). Let G be a graph. All roots of the matching
polynomial µ(G, x) are real. Moreover, they are symmetrically placed with respect to 0. �

The matching polynomial has direct applications in mathematical chemistry. Many mea-
sures of stability of chemical compounds have been introduced and studied in the past.
One of the most significant is the resonance energy. For some families of compounds it has
been observed that the number of different Kekulé structures is positively correlated with
the stability of the compound. One way to precisely formulate the resonance energy is as
follows.

Definition 3.10. Let G be a graph and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G.
Let λ(m)

1 ≥ λ
(m)
2 ≥ · · · ≥ λ(m)

n be the roots of the matching polynomial of graph G. The
topological resonance energy of G, denoted TRE(G), is defined as

TRE(G) =
n∑
i=1

vi
(
λi − λ(m)

i

)
, (3.84)

where vi is the occupation number of the i-th molecular orbital.

Topological resonance energy was defined by Gutman, Milun and Trinajstić [103]. It was
further studied by Gutman and Mohar [104]. Note that the roots of the matching polyno-
mial can be ordered because they are all real numbers by Proposition 3.12.
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3.4.3 Conjugated circuits
This section is devoted to the conjugated circuits approach to π-electron currents which
is a generalised notion of ring currents. A ring current is a physical effect in aromatic
molecules that are placed in a magnetic field. A ring current is induced in the delocalized
π electrons by the perpendicular component of the field, which are thereby caused to move
freely across the molecule, rather than being localized in bonds. The study of conjugated
circuits was initiated in 1976 by Milan Randić [173] in order to study resonance energy of
polycyclic conjugated hydrocarbons. The concept of conjugated circuits has since found
several applications in theoretical chemistry and in discrete mathematics. The 1979 paper
by Gutman and Randić [105], among other uses, mentions clarification of the concept of
aromaticity and generalisation of the Hückel rule to polycyclic conjugated systems. The 157-
page review paper by Randić [175] on aromaticity indicates in a short aside that conjugated
circuits can also be used to determine π-electron currents. This application of conjugated
curcuits is further elaborated in [176].

Our first model is purely combinatorial and has limited application to actual π-electron
currents. The model depends only on the graph and not on its position in space. This gives
a reasonable approximation to the case when the molecule is planar or nearly planar (e.g. a
benzenoid) and the magnetic field is directed perpendicularly to the plane of the molecule.
One could refine the model to spatial structures. In the refined model the values of ring
currents should be multiplied by a cosine of the angle between the normal of the plane and
the direction of magnetic field. For a molecule that changes shape if viewed from different
angles the ring currents cannot be computed independently of the direction of the magnetic
field.

We may define the symmetric difference of two perfect matchings, denoted by Ci,j, as
follows:

Ci,j := Fi ⊕ Fj. (3.85)

Gutman and Cyvin [102] use ki to denote i-th perfect matching and ∆ to denote symmetric
difference operation. Expression ki ∆ kj in their notation corresponds to Fi ⊕ Fj in ours.

Before we go any further, we have to decide how exactly to interpret the operation ⊕.
Formally, a perfect matching Fi is a subset of edges of graph G. Therefore, Ci,j = Fi ⊕ Fj
is also a subset of edges. However, we can also view Fi and Ci,j as subgraphs of G. What
is the vertex set of the subgraph Ci,j? Since both Fi and Fj are spanning subgraphs of
G it would make sense to also consider Ci,j a spanning subgraph of G. But we take a
different approach and omit all isolated vertices. Thus, the support (i.e., the vertex set) of
Ci,j consists of all vertices of G that belong to at least one edge of Ci,j.

Example 3.14. In this section, we consider the phenanthrene graph Gp as a generic exam-
ple for clarifying the introduced structures. Figure 3.19 depicts the five Kekulé structures
Fi, 1 ≤ i ≤ 5, of the phenanthrene graph Gp. Figure 3.25 depicts the symmetric difference
of F1 and F2 and the symmetric difference of F1 and F5. �

Let H be a subgraph of G. Recall that G −H denotes the subgraph of G induced on
the set V (G)\V (H), i.e., on the set of vertices of G that do not belong to H. Graph G−H
will be called residual of H.
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(a) C1,2 = F1 ⊕ F2 (b) C1,5 = F1 ⊕ F5

Figure 3.25: Examples of symmetric difference of perfect matchings of Gp.

Let Fi,j = Fi ∩ Fj denote the intersection of matchings, i.e., the graph induced by the
set of edges common to both Fi and Fj. We give a simple lemma:

Lemma 3.13. Let G be a graph with perfect matchings F1 and F2. Then

V (G) = V (C1,2) t V (F1,2),

where C1,2 is the symmetric difference and F1,2 is the intersection of perfect matchings.

Proof. A vertex v ∈ V (G) is endpoint of an edge ev,1 ∈ F1 and endpoint of an edge ev,2 ∈ F2.
If ev,1 = ev,2 then v ∈ V (F1,2). If ev,1 6= ev,2 then v ∈ V (C1,2). It is clear that v can not
belong to both V (F1,2) and V (C1,2).

Proposition 3.14. Let G be a graph and let {F1, F2, . . . , FK} be the set of its perfect
matchings. For any i, j, 1 ≤ i, j ≤ K, the graph Ci,j is either:

(a) empty, when i = j, or

(b) vertex-disjoint union of one or more even cycles, when i 6= j.

Moreover, the residual graph G− Ci,j is Kekulean.

Proof. Part (a) is clear, because X ⊕ Y = ∅ if and only if X = Y for any sets X and Y .
Graph Ci,j is finite and each vertex of Ci,j is incident to one edge from Fi and one other

edge from Fj, i.e., Ci,j is a 2-regular graph where edges are colourable with two colours
(use colour i for edges which come from Fi). Hence, Ci,j is a union of vertex-disjoint even
cycles.

By Lemma 3.13, Fi,j is a perfect matching of G− Ci,j, hence G− Ci,j is Kekulean.

The number K(G − H) will be called the residual Kekulé number of H. Motivated by
Proposition 3.14 we define conjugated circuits as follows:

Definition 3.11. Let G be a graph and C its subgraph. If C is a vertex-disjoint union of
(zero or more) even cycles and the residual graph G − C is Kekulean then C is called a
conjugated circuit.

Note that the empty graph is a conjugated circuit of every Kekulean graph. We will call
it the empty conjugated circuit. When Randić first defined conjugated circuits [174] he
considered only the case when the circuit is composed of a single cycle. For this reason we
give to such structure a special name.
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Definition 3.12. Let G be a graph and C one of its conjugated circuits. If C is a connected
non-empty graph (i.e., a single cycle) then C is called a conjugated cycle.

Using this terminology one could say that in [174] Randić considered conjugated cycles
and not conjugated circuits in general. Later, in 1979, Gutman and Randić [105] treated
conjugated circuits in general (they called such structures disjoint conjugated circuits). Note
that the notion of F -alternating cycles (see Definition 3.6) is closely related to conjugated
circuits. In the special case when F is a perfect matching, alternating cycles are exactly
conjugated cycles.

We define the restriction of a Kekulé structure to a subgraph:

Definition 3.13. Let G be a graph, let H ⊆ G be its subgraphs and let F ⊆ E(G) be a
perfect matching in G. The set of edges F ∩ E(H) is called the restriction of F to H.

Example 3.15. Look at the graph Q3 in Figure 3.26. Let F = {(1, 4), (2, 6), (3, 7), (5, 8)}
be one of its perfect matchings (it is emphasized on Figure 3.26). Let H1 be the subgraph

5 6

1 2

34

78

Figure 3.26: Graph Q3 with one of its perfect matchings.

of Q3 that is induced on vertices {5, 6, 7, 8} and let H2 be the subgraph that is induced on
vertices {2, 3, 6, 7}. We can see that the restriction of F to H2 is a perfect matching in H2,
whilst, the restriction of F to H1 is not a perfect matching in H1. �

Conjugated circuits of a graph are closely related to its Kekulé structures.

Definition 3.14. Let G be a graph, C one of its conjugated circuits and F one of its perfect
matchings. We say that C and F are compatible if the restriction of F to C is a perfect
matching in C.

Note that in the Definition 3.14, the restriction of F to G − C is also a perfect matching
in G − C. The following theorem by Gutman and Randić gives us a characterisation of
conjugated circuits:

Theorem 3.15 (Characterisation of conjugated circuits, [105]). Let C be a subgraph of G.
Then C is a conjugated circuit if and only if there exists a pair of Kekulé structures of G,
say Fi and Fj, such that C = Ci,j = Fi ⊕ Fj.

Proof. For the reverse direction, the proof is immediate. By Proposition 3.14, for any pair
of perfect matchings Fi and Fj the graph Ci,j is a conjugated circuit.
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In the other direction the proof is slightly more involved. Let C be a conjugated circuit
in G. Since G − C is Kekulean, we may choose a perfect matching of G − C, says E0.
Assume C is composed of s vertex-disjoint even cycles C1, C2, . . . , Cs. Let Ei and E ′i be the
two perfect matchings in Ci. Then the union F = E0 ∪ E1 ∪ . . . ∪ Es determines a perfect
matching in G. Analogously, F ′ = E0 ∪E ′1 ∪ . . .∪E ′s is also a perfect matching in G. Since
F ⊕ F ′ = C, the result follows.

Note that in Theorem 3.15 the Kekulé structures Fi and Fj are both compatible with
conjugated circuit C. The theorem tells us that each ordered pair (i, j), i 6= j, 1 ≤ i, j ≤ K,
determines a conjugated circuit. However, the same conjugated circuit is counted more than
once. The following result gives exact numbers:

Theorem 3.16. Let C be a conjugated circuit of G, having s connected components, and
let k = K(G − C) be the residual Kekulé number of C. Then the number of ordered pairs
(i, j), such that C = Ci,j, is equal to 2sk.

Proof. Let (i, j) be a pair that determines C. The restrictions of matchings Fi and Fj to
G − C coincide. Each of the matchings Fi and Fj can be assembled from a matching in
C and a matching in G − C. The shared part (matching in G − C) can be chosen in k
different ways. The two matchings must be complementary in each cycle of C. Since each
cycle of C has two matchings, one of them goes to Fi and the other one goes to Fj. Thus,
there are 2s ways to do that. Since the two parts (matching in C and matching in G− C)
can be chosen independently and this covers all possibilities the product of the counts gives
the result.

Note that pairs (i, j) and (j, i) give the same conjugated circuits due to symmetry of op-
eration ⊕. The number of unordered pairs {i, j} such that C = Ci,j is therefore equal to
2s−1k. In [72] a different counting has been performed for s = 1. Here, we give a slight
generalisation:

Theorem 3.17. Let C be a conjugated circuit of G, having s connected components, and
let k = K(G−C) be the number of perfect matchings of G−C. Then the number of ordered
pairs (i, j), such that C is contained in Ci,j, is equal to 2sk2.

Proof. Let (i, j) be a pair that determines C. The restrictions of perfect matchings Fi and
Fj to G−C may be any pair of matchings in G−C. This can be arranged in k2 ways. On
the other hand, they must be complementary in each cycle of C. This can be done in 2s
ways. Since the two parts can be chosen independently and this covers all possibilities the
product of the counts gives the result.

Example 3.16. Some conjugated circuits can be written as a symmetric difference in more
than one way. For example, the circuit in Figure 3.25(a) can be written as F1⊕F2 or F4⊕F5
and the circuit in Figure 3.25(b) can be written as F1 ⊕ F5 or F2 ⊕ F4. �

Lemma 3.18. Let G be a graph, C a conjugated circuit and F a perfect matching in G such
that C and F are compatible. There exists a unique matching F ′ such that C = F ⊕ F ′.
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Proof. If C and F are compatible then the restriction of F to C is a perfect matching in
C and the restriction of F to G− C is a perfect matching in G− C. Because none of the
edges incident with vertices V (G−C) belongs to C, matchings F and F ′ must coincide on
G−C, i.e., F ∩E(G−C) = F ′ ∩E(G−C). Recall that cycles of even length have exactly
2 different perfect matchings. One of them is F ∩ E(C). Let M denote the other perfect
matching in C. It is easy to see that C = F ⊕ F ′ implies F ′ ∩ E(C) = M . The matching
F ′ must be equal to M ∪ (F ∩ E(G− C)) and is therefore uniquely determined.

The original approach of Randić to conjugated circuits was different. He was looking at
the ways to extend a given Kekulé structure to a conjugated circuit, i.e., he was looking
for conjugated circuits that are compatible with a given Kekulé structure. In the paper
with Gutman [105] they announced what Randić later calls ‘Gutman’s important theorem’
[176], and can be phrased in our terminology in the following way:

Theorem 3.19 (Gutman and Randić, [105]). Let G be a graph with K perfect matchings
and let F be any of its perfect matchings. There are exactly K − 1 distinct non-empty
conjugated circuits that can be written as a symmetric difference between F and some other
perfect matching of G.

In other words, there are exactly K − 1 distinct non-empty conjugated circuits that are
compatible with F .

Proof of Theorem 3.19. Let C(F ) be the set of conjugated circuits that are compatible with
F . By Theorem 3.15, this means that C ∈ C(F ) if and only if there exists a perfect matching
F ′ such that C = F ⊕ F ′. Clearly, F ′ is different from F and is uniquely determined by C
and F by Lemma 3.18. The bijection between the set of perfect matchings different from
F and the set C(F ) establishes that fact that |C(F )| = K − 1.

Let us finish this section with a chemical application of conjugated circuits. We describe
the conjugated circuits model of π-electron currents [176]. Let G be a plane Kekulean
graph with a distinguished outer face. Let us convert it to a directed graph by choosing an
arbitrary direction for each edge (which converts the edge to an arc). For an example see

(a) G (b) ~G

Figure 3.27: A plane Kekulean graph G and its corresponding digraph ~G.

Figure 3.27. Then determine all of its Kekulé structures. The graph G in Figure 3.27 has
Kekulé number K(G) = 4. All of its Kekulé structures are shown in Figure 3.28. Then find
all the conjugated circuits in graph G by using Theorem 3.15. All symmetric differences
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(a) F1 (b) F2 (c) F3 (d) F4

Figure 3.28: The four Kekulé structures Fi, 1 ≤ i ≤ 4, of the graph G.

(a) ~C1,2 (b) ~C1,3 (c) ~C1,4 (d) ~C2,1 (e) ~C2,3 (f) ~C2,4

(g) ~C3,1 (h) ~C3,2 (i) ~C3,4 (j) ~C4,1 (k) ~C4,2 (l) ~C4,3

Figure 3.29: The complete list of conjugated circuits of the graph G.
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Fi ⊕ Fj of Kekulé structures Fi and Fj for all i 6= j are shown in Figure 3.29. Assign an
orientation to each conjugated cycle of each conjugated circuit. If the cycle is aromatic
(i.e., its length is congruent to 2 modulo 4) then use anti-clockwise orientation. If it is
anti-aromatic (i.e., its length is congruent to 0 modulo 4) then use clockwise orientation.
We obtain a directed conjugated circuit ~Ci,j from conjugated circuit Ci,j. Note that all
conjugated circuits in Figure 3.29 have already been assigned an orientation.

We say that an arc e ∈ A(~G) agrees with the direction of a directed subgraph ~H ⊆ ~G

if e and the corresponding arc in ~H have the same orientation. For each arc e ∈ A(~G) and
for each conjugated circuit Ci,j define

s(Ci,j, e) =


1, if e ∈ Ci,j and e agrees with the direction of ~Ci,j;
−1, if e ∈ Ci,j and e doest not agree with the direction of ~Ci,j;
0, otherwise.

(3.86)

Now we can define the π-electron current distribution on ~G:

w(~G, e) =
K(G)∑
i=1

K(G)∑
j=1

s(Ci,j, e). (3.87)

For the digraph ~G in Figure 3.27 we obtain the π-electron current distribution which is visu-
alised by Figure 3.30(a). The digraph ~G can always be chosen in such way that w(~G, e) ≥ 0

(a) (b)

Figure 3.30: The π-electron current distribution on ~G.

for every arc e ∈ A(~G). Such representation is in Figure 3.30(b). The direction and val-
ues on arcs e for which w(~G, e) = 0 are not displayed in the figure. This represents the
flow of delocalised π electrons when the molecule is placed in a magnetic field which is
perpendicular to the plane of the molecule.

3.4.4 Pauling bond order
Let G be a Kekulean graph and let P (e) be the number of Kekulé structures passing through
the edge e ∈ E(G). The number P (e) is called the matching number of the edge e.
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Definition 3.15. The number
p(e) = P (e)

K(G) , (3.88)

i.e., the fraction of those Kekulé structures that pass through e, is called the Pauling bond
order of e.

This concept was introduced in 1935 by L. Pauling [156].

Example 3.17. Consider the phenanthrene graph Gp. Recall that K(Gp) = 5. Its five
Kekulé structures are shown in Figure 3.19. It is not hard to determine the Pauling bond

Figure 3.31: Pauling bond orders of the phenanthrene graph Gp.

orders for graph Gp. One can determine the numbers P (e) for each e ∈ E(Gp) from the
Figure 3.19. Pauling bond orders for all edges of Gp are shown in Figure 3.31. �

Note that p(e) is not defined if the graph G is not Kekulean. It is easy to see that∑
v∈G(u)

p(uv) = 1 (3.89)

for all u ∈ V (G). It is also obvious that p(e) ∈ [0, 1] ∩ Q for all e ∈ E(G). For a given
number p ∈ [0, 1] ∩Q let Ep(G) = {e ∈ E(G) | p(e) = p}, i.e., Ep(G) is the set of edges of
G which have Pauling bond order p. Let us define a mapping ηG : [0, 1] ∩Q→ N0 by

ηG(p) = |Ep(G)|. (3.90)

Symbol N0 denotes the set of all non-negative integers. It is easy to see that∑
p∈[0,1]∩Q

ηG(p) = |E(G)|. (3.91)

Example 3.18. For the cycle graph G = C2n of even length we have ηG
(

1
2

)
= 2n and

ηG(p) = 0 for all p 6= 1
2 .

The edges from E0(G) have the property that they do not belongs to any Kekulé structures.
Similarly, each edge from E1(G) belongs to all Kekulé structures of G. The Pauling bond
order is a pre-quantum analogue of the Coulson π bond order.
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3.5 Polyhedral self-assembly
In 2013 Gradišar et al. [84] successfully designed a self-assembly tetrahedral polypeptide
called tet12. They designed a linear chain of twelve peptides, separated by flexible links,
such that certain pairs of peptides “glued” together and formed coiled coil dimers. The end
result was a stable tetrahedron in which each of its six edges was a coiled coil dimer. Every
peptide is a chain composed of several amino acids. There exist 20 standard amino acids,
each of which has its name, a three-letter code and a one-letter code (see Table 3.6). The
tet12 is composed of 476 amino acids and can be encoded as a string of length 476 using
one-letter codes:

tet12 = start + aph + link + p3 + link + bcr + link + gcnsh +
link + aph + link + p7 + link + gcnsh + link + p4 +
link + p5 + link + p8 + link + bcr + link + p6 + stop,

(3.92)

where

aph = "MKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQA",
bcr = "DIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAK",

gcnsh = "QLEDKVEELLSKNYHLENEVARLKKLVG",
p3 = "SPEDEIQQLEEEIAQLEQKNAALKEKNQALKYG",
p4 = "SPEDKIAQLKQKIQALKQENQQLEEENAALEYG",
p5 = "SPEDENAALEEKIAQLKQKNAALKEEIQALEYG",
p6 = "SPEDKNAALKEEIQALEEENQALEEKIAQLKYG",
p7 = "SPEDEIQALEEKNAQLKQEIAALEEKNQALKYG",
p8 = "SPEDKIAQLKEENQQLEQKIQALKEENAALEYG",

start = "MYHHHHHHSRAG",
link = "SGPG" and
stop = "SGTS".

In the above expression (3.92), operation + denotes concatenation of strings. Some of the
peptide pairs in this chain are “compatible”, i.e., they will interlock and form stable coiled
coil dimers. On the other hand, those pairs that do not have strong affinity to each other
will not form a coiled coil dimer. Let P be a multiset of 2m peptides. In the case of tet12
the multiset P is

{aph,aph,bcr,bcr,gcnsh,gcnsh,p3,p4,p5,p6,p7,p8}. (3.93)

We can imagine a graph with a vertex for every peptide in P and an edge between two of
them if and only if they are compatible. If this graph is a disjoint union of m copies of K2
it induces a partition on P into pairs. Then P is called a multiset of orthogonal peptide
pairs. Even though the problem of determining whether a pair of peptides forms a stable
coiled coil dimer and the problem of finding a large multiset of orthogonal peptide pairs
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Amino acid Three-letter code One-letter code
Alanine Ala A
Cysteine Cys C
Aspartic acid Asp D
Glutamic acid Glu E
Phenylalanine Phe F
Glycine Gly G
Histidine His H
Isoleucine Ile I
Lysine Lys K
Leucine Leu L
Methionine Met M
Asparagine Asn N
Proline Pro P
Glutamine Gln Q
Arginine Arg R
Serine Ser S
Threonine Thr T
Valine Val V
Tryptophan Trp W
Tyrosine Tyr Y

Table 3.6: List of the 20 standard amino acids.

are both interesting from a chemical point of view, we will not address them here. This is
described in the paper by Gradišar and Jerala [85] and in references cited therein. In our
model this information will be given in advance. We know from experimental evidence that
the following pairs are orthogonal peptide pairs:

(p3,p4), (p5,p6), (p7,p8), (gcnsh,gcnsh), (aph,aph) and (bcr,bcr). (3.94)

Certain pairs consist of two copies of the same peptide. They are called homodimers.
Otherwise they are called heterodimers. This information alone is not sufficient to fully
describe the glueing process that leads to the tetrahedron. The polypeptide chain Tet12 is
directed (from start to stop) and so are all peptides along it. Two peptides may be glued
together in such way that they both point in the same direction. In this case they form a
parallel dimer. If they point in opposite directions, they form an anti-parallel dimer. The
problem of determining whether a given dimer is parallel or anti-parallel resides outside
our current model. This information is provided as input data. For the case of tet12, we
know that (aph,aph) and (bcr,bcr) are antiparallel dimers, whilst, all other pairs from
(3.94) are parallel dimers.

Before we demonstrate the glueing process, we will describe the mathematical model
that we use. The polypeptide chain is modeled with a labeled directed path of length 2m,
where m is the number of peptide pairs. Instead of names aph,p3,bcr, . . . we will use
letter a, b, c, . . .
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Figure 3.32: Representation of Tet12 with a labeled directed path ~P13.

Let ~P2m+1 be the directed path on 2m+1 vertices. (It contains 2m arcs which represent
peptides.) Let Σ be an alphabet with one symbol for each different peptide. For the case
of tet12,

Σ = {a, b, c, d, e, f, g, h, i}. (3.95)

The map w : A(~P2m+1) → Σ assigns a symbol to each arc. The tet12 can be modeled by
the digraph in Figure 3.32. This labeled digraph can be represented as the sequence

(a, b, c, d, a, e, d, f, g, h, c, i). (3.96)

The information on which peptides glue together is encoded in the glueing mapping

gl : Σ→ Σ t Σ−1, (3.97)

where Σ−1 = {x−1 | x ∈ Σ}. The mapping gl for tet12 is given in Table 3.7. If gl(x) ∈ Σ

x a b c d e f g h i
gl(x) a−1 f c−1 d h b i e g

Table 3.7: The glueing mapping for tet12.

then x and gl(x) glue together in a parallel way. If gl(x) ∈ Σ−1 then x and gl(x) glue
together in an anti-parallel way. Note that if gl(x) ∈ {x, x−1} then x is a homodimer.

The mapping gl can be extended to gl : Σ t Σ−1 → Σ t Σ−1 by defining

gl(x−1) = gl(x)−1 and (x−1)−1 = x. (3.98)

Note that gl is an involution on ΣtΣ−1. Let r : ΣtΣ−1 → ΣtΣ−1 such that r(x) = x−1.
Then 〈gl, r〉 generates a group that is a subgroup of bijections on ΣtΣ−1. The group 〈gl, r〉
acts on ΣtΣ−1. The set x〈gl,r〉 = {α(x) | α ∈ 〈gl, r〉} is called the orbit of x. The elements
of the orbit space (Σ t Σ−1)/〈gl, r〉 = {x〈gl,r〉 | x ∈ Σ} correspond to peptide pairs.

A glueing sequence is a bijection s : {1, 2, . . . ,m} → (ΣtΣ−1)/〈gl, r〉. The mapping s is
usually given as a vector with m elements from Σ which are representatives of each orbit.
This mapping tells us that the peptide pair s(1) glues first, followed by s(2) and so on.

The question of determining the glueing sequence lies outside this model. The glueing
sequence is crucial from the chemical viewpoint and was considered in the papers by Kočar
et al. [123, 126]. If the sequence is wisely chosen then the polypeptide chain has a greater
chance to form the desired polyhedron (note that in a real chemical experiment, a range
of malformed byproducts may occur). Besides high folding yield, a good glueing sequence
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also folds rapidly on temperature quenching. Note that our model is general enough to also
cover the DNA self-assembly.

We know that the pair (aph,aph) is the most stable and will be the first to glue. It is
followed respectively by (p3,p4), (p5,p6), (bcr,bcr), (p7,p8) and finally (gcnsh,gcnsh).
In our abstract model we use letters a, b, c, . . . to represent peptides. The glueing sequence
of tet12 is

(a, b, g, c, e, d). (3.99)

Figure 3.33 demonstrates the glueing process of tet12. Because s(1) = a, the arcs
labeled with a are identified and the graph in Figure 3.33(a) is obtained. The edge that
occured by this identification is coloured green in the figure and its direction is not displayed.
Because gl(a) = a−1, one of the arcs has to be reversed before the identification is carried
out. We can arbitrarily choose any of the two, because the end result is essentially the
same. Once the two peptides are glued together their orientation does not matter anymore.
Because s(2) = b, the arcs labeled with b and f are next to be identified. Since gl(b) = f
they are glued in the parallel way and the graph on Figure 3.33(b) is obtained. In the end,
we obtain the tetrahedron (see Figure 3.33(f)). All the intermediate steps in this process
are shown in Figure 3.33.

(a) (b)

(c) (d) (e) (f)

Figure 3.33: Glueing process of the tet12.

Note that the labeling of the path ~P13 cannot be chosen arbitrarily. Example 3.19
provides a path (see Figure 3.34(a)) which does not result in the tetrahedron even though
its labels are a permutation of the original ones.

Example 3.19. Take the same glueing mapping and glueing sequence as in the glueing
process of the tet12. The path in Figure 3.34(a) is different from the one in Figure 3.32.
The end result in this case is the bouquet graph with 6 loops. All the intermediate steps
are shown in Figure 3.34. �
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.34: A glueing process that does not result in a tetrahedron.

The above example shows us that it is not trivial to find a labeled path that will
result in the desired polyhedron. The first mathematical model for this problem, which
was developed with trivalent polyhedra in mind, was described by Klavžar and Rus [120].
A year later, the model was refurbished by Fijavž, Pisanski and Rus [67] to include all
polyhedra.

Definition 3.16. A double trace in a graph G is a walk which traverses every edge exactly
twice.

A double trace in a simple graph can be given as a sequence of vertices

W = w0w1w2 . . . w2m, (3.100)

where indices are taken modulo 2m. It is easy to see that every graph G admits a double
trace. If we replace every edge of G by a digon, we obtain an Eulerian multigraph G′. An
Eulerian circuit in G′ corresponds to a double trace in G. Because all vertices in G′ are of
even degree the following proposition follows:
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Proposition 3.20 (Proposition 2.1 in [67]). Every graph G has a double trace. �

Example 3.20. This example demonstrates that a double trace in a graph G does not
in general give rise to a directed path (which represents a polypeptide) that will result in
the graph G after the glueing process is performed. The skeleton of the tetrahedron is the
graph K4. Let V (K4) = {1, 2, 3, 4}. The walk

W = 1 2 4 2 3 1 4 3 1 2 3 4 1 (3.101)

is a double trace in K4. The polypeptide chain can be obtained in the following way. Take
the directed path ~P13 and label its arcs consecutively with letters a, b, c, . . . , l. Simultane-
ously traverse the path ~P13 andW . When an edge of K4 is traversed for the first time, label
it with the label of the corresponding arc of ~P13 and direct the edge of K4 in the direction
of its traversal. Now suppose that it is traversed for the second time. Let x be the label
on the arc of K4 and y the label on the arc of ~P13. If the arc of K4 is traversed in the
same direction, define gl(x) = y and gl(y) = x. If it is traversed in the opposite direction,
define gl(x) = y−1 and gl(y) = x−1. The resulting glueing mapping is given in Table 3.8
and the labeled digraph that was obtained from K4 during this procedure is in Figure 3.35.

x a b c d e f g h i j k l
gl(x) i c−1 b−1 j h l−1 k−1 e a d g−1 f−1

Table 3.8: The glueing mapping from Example 3.20.

Take an arbitrary glueing sequence and perform the glueing process on the ~P13 using the

Figure 3.35: The labeled digraph that was obtained from K4 during the procedure of
determining the polypeptide chain from a given double trace.

glueing mapping that was obtained in the above procedure. (Note that the end result is
independent of the glueing sequence.) The resulting graph is shown in Figure 3.36. Note
that if vertices 4 and 4′ were identified then we would have obtained the K4. �

Definition 3.17. Let e = uv ∈ E(G) and let W = w0w1w2 . . . w2m be a double trace in G.
If there exists an integer i such that (wi−1, wi, wi+1) = (v, u, v) then W has a retracing.

Let u ∈ V (G) and let v, v′ ∈ G(u) such that v 6= v′. If there exist integers i and j, i 6= j,
such that wi = wj = u and {wi−1, wi+1} = {wj−1, wj+1} = {v, v′} then W has a repetition
through vertex u.

Klavžar and Rus defined the notion of a stable trace:
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Figure 3.36: The result of the glueing process on the polypeptide obtained in Example 3.20.

Definition 3.18. A stable trace is a double trace that has no retracing and no repetition
through its vertices.

A stable trace of a graph G gives rise to a polypeptide that results in the graph G when
the glueing process is performed. Note that the double trace from Example 3.20 has both a
retracing and a repetition. In both cases the vertex labeled with 4 is involved. They proved
the following theorem:

Theorem 3.21 (Klavžar and Rus, Theorem 3.1 in [120]). A graph G admits a stable trace
if and only if δ(G) ≥ 3. �

Fijavž, Pisanski and Rus generalised the notion of a stable trace:

Definition 3.19. Let G be a graph, v ∈ V (G) and N ⊆ G(v). Let W be a double trace in
G. Then W has a N -repetition at v if for all integers i such that wi = v it holds that the
pair {wi−1, wi+1} is either contained in N or disjoint from N .

Definition 3.20. A n-stable trace is a double trace where for all v ∈ V (G) and for all
N ⊆ G(v) such that 1 ≤ |N | ≤ n it holds that W has no N-repetition.

They defined the important notion of a strong trace:

Definition 3.21. Let G be a graph and let W be a double trace of G. If for every vertex
v ∈ V (G) it holds that W has a N-repetition at v if and only if N = G(v) or N = ∅ then
W is called a strong trace.

They also proved the following theorem which is based on a deep result from topological
graph theory [93]:

Theorem 3.22 (Fijavž, Pisanski and Rus, Theorem 3.5 in [67]). Every graph admits a
strong trace. �

LetW be a double trace of a graph G. The double traceW traverses each edge e ∈ E(G)
exactly two times. IfW traverses an edge e in the same direction both times then e is parallel
with respect to W . Otherwise, it is antiparallel with respect to W . If all edges of G are
parallel with respect to W then W itself is called a parallel trace. Similarly, if all edges of
G are antiparallel with respect to W then W is called an antiparallel trace. It is easy to
see that a parallel / antiparallel edge of W gives rise to a parallel / antiparallel dimer in
the self-assembled polypeptide.
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It is possible to obtain a new double trace from existing one. We can change the
direction of tracing (reverse the trace W ) or start at a different vertex (shift the trace
W ). If the graph G posesses a symmetry, we can obtain a new trace by acting by a graph
automorphism α ∈ Aut(G) on W .

Definition 3.22. Double traces W and W ′ are equivalent if W ′ can be obtained from W
by using any combination of the following operations:

(i) reversion of W ;

(ii) shifting W ;

(iii) applying a permutation on W induced by an automorphism of G.

Otherwise, traces W and W ′ are called non-equivalent.

Let T (G) denote the set of all double traces of a graph G. The equivalence of double traces
is an equivalence relation on the set T (G). This is clearly also an equivalence relation on
any subset of T (G), such as stable traces, strong traces and so on. Assume that vertices
V (G) = {v0, . . . , vn−1} of the graph G are linearly ordered as

v0 < v1 < · · · < vn−1. (3.102)

This ordering induces a lexicographic ordering on the set of double traces of G, i.e.,W ≤ W ′

if and only ifW = W ′ or there exists an index i, 0 ≤ i ≤ 2m, such that wi < w′i and wj = w′j
for all j < i. Every subset S ⊆ T (G) has a lexicographically smallest member which is
called the canonical representative of S.

Let us define mappings ρ, σi : T (G)→ T (G) as

ρ(w0 . . . w2m) = w2m . . . w0 and σi(w0 . . . w2m) = wi . . . w2m+i. (3.103)

Note that σ0 = σ2m = idT (G). Let α ∈ Aut(G). The automorphism α acts on T (G) in the
following way:

α(w0 . . . w2m) = α(w0) . . . α(w2m). (3.104)
Then Aut(G), R = {id, ρ} and S = {σi | i = 0, . . . , 2m − 1} are three groups acting on
T (G). Elements of the orbit space T (G)/(Aut(G)×R×S) are precisely equivalence classes
of double traces for the equivalence relation from Definition 3.103.

The group Aut(G)×R×S partitions the 672 different strong traces of the tetrahedron
graph into 3 equivalence classes of sizes 288, 288 and 96 [12]. Representatives of those three
equivalence classes are visualised in Figure 3.37. Note that the traces are represented by
closed curves, because the position of the starting vertex can be arbitrarily chosen (since
traces that can be obtained from each other by shifting operations σi are equivalent). The
curve that represents the trace is drawn in such a way that it intersects itself and crosses
the drawing of graph G only at the midpoint of an edge.

A branch-and-bound algorithm that outputs each canonical strong trace of G is de-
scribed in [12]. Here, we introduce map traces and describe an algorithm for enumerating
them that uses dynamic programming.
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(a) (b) (c)

Figure 3.37: The three non-equivalent strong traces of the tetrahedron graph.

We may view the strong traces in Figure 3.37 as walks traversing all flags of a map
M which is a combinatorial representation of a cellular embedding of the graph G. The
trace can be therefore interpreted as a 2-regular graph whose vertices are flags of M . This
motivates us to define the following:

Definition 3.23. LetM = (Φ, τ0, τ1, τ2) be a map. Choose a mapping λ : E(M)→ {−1, 1}.
An (undirected) map trace, denoted Qλ, is a 2-regular graph whose set of vertices is Φ and
its edges are defined as follows:

a) φ ∼ τ1(φ);
b) φ ∼ τ0(φ) when λ(eφ) = 1 and φ ∼ τ2τ0(φ) when λ(eφ) = −1.

Map trace Qλ in general consists of one or more even cycles. We are only interested in
those traces that are connected:

Definition 3.24. A connected (undirected) map trace Qλ is a map trace which has a single
connected component.

If we choose an initial flag φ0 and a direction, we can assign a strong trace to a connected
map trace Qλ. Traverse the map trace Qλ in the given direction starting at φ0 to obtain
the closed walk (φ0, φ1, φ2, . . . , φ4m = φ0). Then

W (Qλ) = (vφ0 , vφ2 , vφ4 , . . . , vφ4m) (3.105)

is a strong trace. Most of the time, we are interested in non-equivalent strong traces.
Because by shifting and reversing a strong trace W we obtain an equivalent strong trace,
the intial flag φ0 and the direction on the connected map trace Qλ can be arbitrarily chosen.

Example 3.21. The concepts introduced above are illustrated in Figure 3.38 which shows
an embedding of the (trigonal) bipyramid graph in the plane. Its vertices are labeled with
numbers 1, 2, . . . 5, its 9 edges are labeled with lowercase letters a, b, . . . , i and its 6 faces
are labeled with uppercase letters A,B, . . . , F . Green dots in Figure 3.38 represent flags.
This particular map is flag-simple, so we can uniquely label the flags with vertex-edge-face
triples; two of those labels, namely (5, g, F ) and (5, i, F ), are indicated in Figure 3.38. It
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Figure 3.38: Embedding of the bipyramid in the plane and one of its connected map traces.

should be obvious to the reader how to label the rest. The magenta line represents the map
trace.

Note that in Figure 3.38 the edges of the map traceQλ (magenta segments) can be drawn
in such a way that they do not intersect the lines that represent edges of the skeleton graph
G = Skel(M), except in the middle of some edges where the map trace also crosses itself.
Such a crossing on edge e occurs precisely when λ(e) = −1. Note that the drawing of the
map trace does not intersect itself near any vertex of the skeleton graph. This property
makes perfect sense from a chemical point of view [15]. �

Definition 3.25. Map M is compatible with a strong trace W if there exists a map trace
Q such that W = W (Q).

Not every strong trace is compatible with every map. For example, if a strong trace of the
bipyramid contains the subsequence (1, 2, 5) then it is obviously not compatible with the
map in Figure 3.38.

Note that different map traces may yield the same strong trace as in the case of the cycle
graph C5 embedded in the plane as shown in Figure 3.39. However, if minimum degree in

Figure 3.39: Two different connected map traces Qλ and Qλ′ yielding the same strong trace,
i.e., W (Qλ) = W (Qλ′).

the graph G = Skel(M) is at least 3, the map trace is either:

(a) uniquely determined from the strong trace or

(b) it is not compatible with the given map M .
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For most applications it is sufficient to find strong traces that are compatible with a fixed
embedding of the graph G. We can immediately obtain a simple brute-force algorithm
with the time complexity that is exponential in m, where m is the number of edges of the
skeleton graph Skel(M). The algorithm enumerates all strong traces that are compatible
with a given map M :

Let M be a map with 4m flags and let G = Skel(M). Let L = ∅. In the end, the set L
will contain all canonical strong traces that are compatible with M . Iterate over all subsets
E ⊆ E(G). For a given set E define the mapping λE : E(G)→ {−1, 1}, such that

λE(e) =

1, e ∈ E ;
−1, otherwise.

(3.106)

Check whether QλE is a connected map trace. If it is connected, take W = W (QλE ). Then
determine the canonical strong trace W ′ that is equivalent to W and add W ′ to the set L.
After we process all subsets of E(G), the set L will contain all canonical strong traces that
are compatible with M .

Now imagine that we cut the map (that has a strong trace drawn on it) along its edges.
From the tetrahedron we obtain four ‘jigsaw puzzle pieces’ (see Figure 3.40). Each piece
corresponds to one face. The strong trace that was drawn on the map can be obtained

Figure 3.40: Jigsaw puzzle pieces.

from these jigsaw pieces by glueing them back together. This is the main idea behind the
dynamic programming algorithm. In order to provide a formal description of the algorithm,
we first define:

Definition 3.26. Let Qλ be a map trace. A partial map trace of a face f ∈ F (M) is a
subgraph of Qλ induced on the set of flags {φ | fφ = f}.

A partial map trace of a subset of faces F ⊆ F (M) is a subgraph of Qλ induced on the
set of flags {φ | fφ ∈ F}.

Clearly, a partial trace is a disjoint union of cycles and paths. We will call it admissible if:

(a) it does not contain cycles and F is a proper subset of F (M) or
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(b) it is a connected trace and F = F (M).

By choosing a proper subset of faces of the map, we obtain a surface with boundary. This
boundary is a disjoint union of cycles:

C1, C2, . . . , Cr. (3.107)

On each of those cycles we choose a reference vertex vi ∈ Ci and a direction. The signature,
denoted by σ(Q̃), of a partial map trace Q̃ can be obtained in the following way:

Traverse, consecutively, the cycles C1, C2, . . . of the boundary by starting at the reference
vertex and travelling in the chosen direction. For each flag φ that you encounter along the
walk, write down one symbol:

(a) If the degree of vertex φ in the partial map trace is 2, write down the symbol ?.

(b) If the degree of vertex φ is 1, find the other end of this path. If it was already labeled,
write down its label. If it was not labeled yet, label it using the smallest positive
integer that was not used so far.

Example 3.22. Figure 3.41 shows an example where 5 faces were chosen from a larger map.

Figure 3.41: A partial map trace together with its signature.

The boundary consists of two cycles denoted C1 and C2. Reference vertices and directions
are also indicated. The signature of this partial map trace is

(1, 2, 3, 2, ?, ?, ?, ?, 3, 1, 4, 5, 6, 6, ?, ?, ?, ?, 4, 5, ?, ?). (3.108)

�

If the partial map trace Q̃ is admissible then we say that σ(Q̃) is also admissible.

Definition 3.27. Let F ,F ′ ⊂ F (M) such that F ∩ F ′ = ∅. Let Q̃ and Q̃′ be their
corresponding partial map traces. We say that Q̃ and Q̃′ are compatible if for each edge
e ∈ E(M) that is shared between the boundaries of F and F ′ it holds that all vertices
{φ | eφ = e} of the disjoint union of partial map traces Q̃ and Q̃′ have the same degree
(which is either 1 or 2).
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We can merge partial map traces Q̃ and Q̃′ if they are compatible. While there exists an
edge e ∈ E(M) that is shared between F and F ′ and a degree-1 vertex φ such that eφ = e,
connect the vertices φ and τ2τ0(φ). In this way we obtain the merged partial map trace
Q̃ ◦ Q̃′. If two partial map traces Q̃1 and Q̃2 are compatible then we say that σ(Q̃1) and
σ(Q̃2) are also compatible.

Example 3.23. Let Q̃1 and Q̃2 be two partial map traces (see Figures 3.42(a) and 3.42(b)).
Suppose that faces F1, . . . , F4 are part of a larger map in which faces F1 and F3 as well as
faces F2 and F4 are adjacent. The partial map traces Q̃1 and Q̃2 are compatible. We can

(a) Q̃1 (b) Q̃2 (c) Q̃1 ◦ Q̃2

Figure 3.42: A merged partial map trace Q̃1 ◦ Q̃2.

therefore merge them and obtain the partial map trace Q̃1 ◦ Q̃2 in Figure 3.42(c). �

The key observation is that in order to obtain σ(Q̃ ◦ Q̃′), we only need σ(Q̃) and σ(Q̃′). To
do so, first change the labels in one of the two signatures to obtain distinct labels. Then
look at pairs of vertices (φ, τ0τ2(φ)) where φ belongs to an edge that is shared between F
and F ′. The corresponding labels in the signature can be one of the following (if the two
partial map traces are compatible):

(a) Both are labeled by ? in which case we ignore them.

(b) The labels on φ and τ0τ2(φ) may be two different numbers (in that case relabel the
signature using the smallest of the two numbers).

(c) If the two labels are equal, ignore them (in that case the merged partial trace will
contain a cycle and will not be admissible, unless F ∪ F ′ = F (M)).

Then traverse the boundaries of F ∪ F ′ with respect to chosen reference vertices and
directions. Relabel the signature in such a way that the first occurances of numerical
labels will appear in increasing order within the trace and consecutive integers (starting
with 1) will be used as labels.

The dynamic programming algorithm has three phases which we call the preparation
phase, the main phase and the final phase.

In the preparation phase of the algorithm, we prepare a list of signatures of all admissible
partial map traces of each face fi ∈ F (M).
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(a) (1, 2, 2, 3, 3, 1) (b) (1, 2, 2, 1, ?, ?) (c) (1, 2, ?, ?, 2, 1) (d) (?, ?, 1, 2, 2, 1)

(e) (?, ?, ?, ?, 1, 1) (f) (?, ?, 1, 1, ?, ?) (g) (1, 1, ?, ?, ?, ?) (h) Non-admissible.

Figure 3.43: Partial map traces of a triangular face.

Example 3.24. A triangular face has 7 admissible partial map traces and 1 non-admissible
partial map trace. They are shown in Figure 3.43. Their signatures were also determined.
The partial map trace in Figure 3.43(h) is non-admissible. �

In the preparation phase we also choose a linear ordering f1 < f2 < · · · < f|F (M)| on the
faces of F (M).

In the main phase, we begin with a single face f1 and iteratively add new faces to it, one
by one. Formally, define Fi = {f1, . . . , fi} for i = 1, . . . , |F (M)|. For each Fi, choose an
ordering on the cycles that comprise the boundary of Fi and choose a reference vertex and
a direction on each of the cycles. Those reference vertices and directions will be common
to all signatures of Fi.

For each i = 1, 2, . . . , |F (M)| − 1 we will create a dictionary Di whose keys will be
signatures of all admissible partial map traces of Fi. The value in the dictionary that
corresponds to a signature will be the number of all partial map traces with the given
signature. The initial dictionary D1 contains admissible signatures of the face f1. Note
that all values in this dictionary are equal to 1.

The dictionary Di+1 can be obtain from the dictionary Di and the list of admissible
signatures of the face fi+1. Combine each signature in Di with each signature of fi+1. If
they are compatible and the resulting signature is admissible, increase the count of the
resulting admissible signature in Di+1 by the corresponding value stored in Di.

Example 3.25. Order the faces of the tetrahedral map as indicated by red numbers in
Figure 3.44(a). The dictionary D1 contains all admissible signatures from Figure 3.43.
The signature in Figure 3.44(b) cannot be merged with the one in Figure 3.43(e), because
they are not compatible. But it can be merged with the signature in Figure 3.43(b) and
the partial map trace in Figure 3.45(a) is obtained. On the other hand, the signature in
Figure 3.44(c) is not compatible with the one in Figure 3.43(b), but is is compatible with
the one in Figure 3.43(e) and they merge into a partial map trace in Figure 3.45(b). �
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(a) (b) (1, 2, ?, ?, 2, 1) (c) (1, 2, 2, 1, ?, ?)

Figure 3.44: Ordering on the faces of the tetrahedron and two (admissible) partial map
traces of the face f2.

(a) (?, ?, 1, 2, 2, 3, 1, 3) (b) (1, 1, 2, 3, 3, 2, ?, ?)

Figure 3.45: Two examples of signatures that are stored in dictionary D2.

Example 3.26. Note that the same signature can be obtained in many different ways. The
signature (1, 1, ?, ?, ?, ?) from dictionary D3 belongs to more than one partial map trace.
Two of them are shown in Figure 3.46.

(a) (b)

Figure 3.46: The signature (1, 1, ?, ?, ?, ?) from dictionary D3 belongs to more than one
partial map trace.
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In the final phase of the algorithm, we build the dictionary D|F (M)|. When the last face
f|M(G)| is added, the boundary disappears. Again, combine each key of D|F (M)|−1 with
each admissible signature of f|M(G)|. If they are compatible and merge into a connected
map trace, increase the total count of connected map traces by the corresponding value in
D|F (M)|−1.

In this algorithm, the number of different connected map trace is obtained. It is possible
to reconstruct the i-th map trace from the data structures that were used in the algorithm.
Note that the symmetries of the mapM were not taken into account here. For more details
on this dynamic programming algorithm, see reference [13].



Chapter 4

The Coulson conjecture on maximum
bond number

When we defined the free valence in Section 3.2.1, we assumed that the maximum π bond
number (i.e., the total π bond order around a sp2 carbon atom) that can be theoretically
obtained (on any centre in any sp2 π system) is no larger than

√
3. This statement does not

appear to have been formally proved. We will provide empirical evidence on the behaviour
of maximum π bond number as a function of vertex count, n, of chemical graphs and
describe the family of graphs that realises local maxima for small n. This research was
initiated by Henry Zubaida in his M.Chem research project at The University of Sheffield.

Let
Nπ(G) = max

r
Nπ
r (G), (4.1)

where G is a given graph. If G is a family of graphs, then

Nπ(G) = max
G∈G

Nπ(G). (4.2)

Let us state the conjecture on maximum π bond number.

Conjecture 4.1. For all chemical graphs (i.e., connected subcubic graphs) G it holds that

Nπ(G) ≤
√

3. (4.3)

�

Conjecture 4.2. The star on 4 vertices K1,3 is the only chemical graph for which the
conjectured maximum bond number

√
3 is attained, i.e., Nπ(K1,3) =

√
3 and Nπ(G) <

√
3

if G 6= K1,3 is a chemical graph. �

Let us first give a brief historical overview. This story goes back to the early days of
molecular-orbital theory. How strong, in total, can the π bonds involving a single sp2

carbon centre be? The folklore answer, based on publications of the Coulson school from
the late 1940’s and early 1950’s, is that in the Hückel model the π bond number of an atom
cannot exceed

√
3 (see Conjecture 4.1), and further that this maximum is uniquely realised

by the trimethylenemethane carbon skeleton (see Conjecture 4.2) in neutral, cation and

99
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anionic states. How did this belief in what is effectively a graph-theoretical conjecture came
about? Unfortunately, the main actors in the story are no longer available for comment,
and we are left with indirect inference from clues in the literature.

A discussion of the historical context is given in the book by Gavroglu and Simões [80].
In the early days of applications of quantum mechanics in chemistry, in the 1940’s radical
reactivity was studied by the French school of Daudel, Pullman and Pullman [168] and in
England and Scotland by Coulson and co-workers [40]. The general principle was that the
reactivity at a given centre would depend on the free valence remaining after the electrons
around the atom had contributed to existing local and delocalised bonds.

Evolution of Coulson’s thinking on this topic can be followed in the literature. In
comments contributed to the published proceedings of the 1945 Faraday Discussion on
Oxidation [119], he notes that free valence is reduced whenever a carbon atom is involved
in making bonds, and he characterizes the degree of that involvement by the bond number,
N . Discussion of bond number can be complicated by the existence of different conventions.
N may include both σ and π bonds, or π bonds alone; the two values differ trivially, as
Nσ+π
r = dr + Nπ

r , where dr is the degree of vertex r in the graph representing the carbon
skeleton. To avoid ambiguity, we explicitly write either Nσ+π or Nπ, e.g., 3 +

√
3 for Nσ+π

in trimethylenemethane, but
√

3 for Nπ in the same molecule. If both σ and π bonds are
included in the count, the bond number of atom r

Nσ+π
r =

∑
s∼r

(1 + P π
rs) = dr +

∑
s∼r

n∑
i=1

vi
(
c(i)
r

)?
c(i)
s , (4.4)

where dr is the degree of r in the carbon skeleton of the molecule, the notation s ∼ r
implies that s runs over neighbours σ-bonded to r, vi is the occupation number (2, 1 or
0) of π molecular orbital i, and c(i)

r is the coefficient of the pπ atomic orbital on centre s
in that molecular orbital. If complex orbitals are used, bond orders remain real, provided
that complete eigenspaces (full sets of degenerate orbitals) are included in the sum.

By 1947, Coulson is noting in a paper contributed to the Faraday Discussion on The
Labile Molecule, that free valence can be quantified as the gap between the actual value
of Nr and some theoretical maximum value Nmax [40]. Initially, he assumed that Nσ+π

max =
3 + 1.680, equating to a maximum π bond number of 1.680. Although not explicitly stated
in the paper, this value (“. . . the maximum . . . found so far for carbon in any molecule
. . . ”) is consistent with the bond number for the degree-3 carbon centre in the benzyl
radical (Nπ = 1.6801416), a molecule that features in the paper. Almost immediately, this
value was revised. In a stop-press footnote to his 1948 paper on Free Valence in Organic
Reactions, contributed at a French meeting, he corrects this number, writing [41] “(∗) Note
added in proof. Mr W. E. Moffitt has just shown that the greatest possible value of Nmax
is 3 +

√
3 = 4.73. This only occurs in the hypothetical molecule C(CH2)3. 4.68 seems to

be the largest value for molecules which are not free radicals.” Given the context of radical
reactivity, it is perhaps surprising that Coulson should have excluded radicals; it is not
clear whether he intended also to exclude closed-shell ionic states of molecules that would
be radicals as neutrals. The circumstantial evidence indicates that he was aware that benzyl
cation would give Nπ

r ≈ 1.68, as would the neutral benzyl radical. However, if benzyl cation
is to be included, why not include trimethylenemethane cation as a non-radical too?
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The footnote already implies at least two mathematical conjectures, one about the value
of Nmax for chemical graphs (see the above Conjecture 4.1), and another for the restriction
to non-radical chemical graphs.

Definition 4.1. A chemical graph G is a non-radical if it has an even number of vertices
and a non-zero gap between eigenvalues λn/2 and λn/2+1.

Longuet-Higgins [129] remarks on this change from 1.68 to
√

3 for maximum π bond
order. (He cites the 1948 footnote for Moffitt’s contribution and adds a citation of his own
unpublished work.) Moffitt was a student of Coulson, who submitted his D. Phil. thesis
on ‘On the Electronic Structure of Molecules’ in Oxford in October 1948 [140]. It includes
(Chapter III) a theoretical investigation of the trimethylenemethane radical, which inspired
experimental investigation and characterisation of this species [62, 66, 199].

Moffitt’s thesis contains a brief discussion of Nmax in the context of a spin-coupled model
of electronic structure, and offers a plausibility argument (rather than a mathematical
proof) for the limiting value, asserting “. . . Now the strength of the π bonding at atom
i will be a maximum, and therefore the residual affinity will be a minimum, when the
spins of the electrons on neighbouring atoms j are free to align with si in the strongest
way – i.e., when the spins are not pre-emptively aligned owing to the presence of other
conjugated parts of the molecule . . . ” [140]. In the published version of the chapter [141]
he adds “Coulson has recently suggested that the molecular orbital method may also be
used to predict reactivity. Analogous quantities ri = 1 − ∑§j pij may also be defined for
these calculations, and arguments similar to those used above lead to minimum affinities
at r = 0, (1−

√
2) and (1−

√
3) respectively.”

This seems to be the only statement that Moffitt made in print on the value of Nmax.
Mathematically, it amounts to a conjecture that Nmax is equal to

√
d and is realised by

the vertices of degree d = 1, 2 and 3 in the graphs K1,1, K1,2 and K1,3, respectively
(see Figure 4.1). We will call the bound

√
d for graphs G with ∆(G) ≤ d the Moffitt

bound. The justification of the
√

3 maximum is repeated, more or less verbatim, in later

K1,1 K1,2 K1,3

Figure 4.1: The star graphs K1,1 to K1,3, with maximum π bond number
√

1,
√

2 and
√

3,
respectively, on the black centres. K1,1 is the complete graph on two vertices (molecular
graph of ethene) and K1,2 is the path on three vertices (molecular graph of the allyl radical).
K1,3 is the molecular graph of the trimethylenemethane radical.

literature, e.g., in Pullman and Pullman’s textbook on ‘Quantum Biochemistry’ [169]. In
other textbooks [44, 191], the value of Nπ

max =
√

3 for sp2 carbon atoms is simply stated as
a fact. For a time, it was enshrined in the official IUPAC definition of free valence [138].

The
√
d values for Nπ

max were used for the Hückel problem in 1951 in the paper by
Burkitt [33]. Adoption of

√
3 as a global maximum for atoms of arbitrary degree was
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discussed in the contemporary literature, as were the values appropriate for heteroatoms,
and atoms in cumulated bonds.

Returning to the earliest statement of the claim: if Moffitt had a formal proof of his
statement, he does not appear to have published it. He died prematurely in 1958 [42].
Coulson himself died in 1974 [3] and does not seem to have elaborated in print on the
demonstration referred to in his 1948 footnote. The reconstruction of his lectures to Oxford
undergraduate classes, published some years after his death by two former students O’Leary
and Mallion [44] includes a statement of the

√
3 maximum, without comment on the history.

The notification of a proof in a marginal note has obvious echoes in the great mathemati-
cal detective stories, and it may never be possible to reconstruct the putative demonstration
of the result Nπ

max =
√

3. We are not aware of a formal proof, but computers now allow
the empirical investigation of the π bond number on a scale that was not possible for the
pioneers in this area. Here, we report on the behaviour of the function Nπ

max(n), the max-
imum π bond number over the set of chemical graphs of order 2 ≤ n ≤ 20. Although
no example exceeding the conjectured global maximum of

√
3 is found, some interesting

behaviour is noted, and a family of locally maximal graphs is identified for 4 ≤ n ≤ 20 and
conjectured to give the highest values of Nπ

max(n) for all n. Perhaps of most interest is the
empirically established existence of a gap between the value of Nπ

max(4) =
√

3, realized by
the star graph K1,3, apparently uniquely, and the limit derived from a family of graphs that
correspond to local maxima. We propose to call this limit the Coulson-Moffitt number.

4.1 Further Properties of Bond Number
Recall that MO coefficients are object to normalisation conditions within an molecular
orbital (see Equation (3.37)) and for each vertex (see Equation 3.49) which act to limit the
maximum achievable value for Nπ

r .
An alternative formula for Nπ

r can be derived from the adjacency eigenvalue equation

A(G)c(i) = λic(i), (4.5)

from which a local condition for each vertex r is

λic
(i)
r =

∑
s∈G(r)

c(i)
s . (4.6)

Note that this is precisely (2.21). Thus,

Nπ
r =

∑
s∈G(r)

P π
rs =

n∑
i=1

∑
s∈G(r)

vic
(i)
r c

(i)
s =

n∑
i=1

vic
(i)
r

∑
s∈G(r)

c(i)
s =

n∑
i=1

viλi
(
c(i)
r

)2
. (4.7)

This formula gives useful chemical information about the rôles of orbitals of different en-
ergies: occupation of a bonding orbital typically increases bond number, occupation of a
non-bonding orbital has no effect on bond number, and occupation of a anti-bonding orbital
typically reduces bond number. This implies an alternative definition of ‘non-bonding’: not
only does occupation of a non-bonding orbital make no contribution to the overall π energy,
it also makes no contribution to the bond number around atom r in a π system.
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In contrast, an individual bond order may increase, decrease or remain unchanged on
occupation of a non-bonding orbital (see Example 4.1).

Example 4.1. Figure 4.2 shows the non-bonding π molecular orbital of the smallest chem-

+a +2a −a
−a

−a

−a

−a

+a

+a

Figure 4.2: The non-bonding π molecular orbital of the smallest chemical nut graph.

ical nut graph. Recall that a nut graph has n0 = 1 and only core vertices, i.e., non-zero
entries in the eigenvector for the unique zero eigenvalue. On addition of an electron to
the non-bonding orbital, five bonds would weaken, and five strengthen in this hypothetical
planar π system. In Figure 4.2, a is 1√

12 . �

Nπ
r is implicitly a function of the structure of the molecular graph G, the number of vertices,

the specific vertex r and the number of π electrons. When we look for the maximum, Nπ
max,

to be used in calculation of free valence, we need in principle to consider all possible electron
counts for all vertices in all possible chemical graphs. Luckily, the equation (4.7) gives a
simple way to avoid this extra complication. For a given molecule, there is an ideal π
electron count compatible with Aufbau, Pauli and Hund’s rules for electron configurations,
that maximises the bond numbers of all centres: the occupation number vi should be 2 for
all eigenvectors corresponding to positive λi, and zero for all others. Hence, when searching
for Nπ

max we may use

Nπ
r =

n+∑
i=1

2λi
(
c(i)
r

)2
, (4.8)

where (n+, n0, n−) is the inertia of the graph G. As the eigenvector corresponding to
the maximum eigenvalue (i.e., the Perron–Frobenius eigenvalue) of a connected graph has
strictly positive entries (by Theorem 2.16), we have that Nπ

max is strictly positive.
We can reformulate the definition of the maximum bond number for a given molecule by

noting that the π bond order for every bond rs, and therefore the bond number for every
centre r, is reduced to zero when all π orbitals, bonding, non-bonding and anti-bonding,
are fully occupied. This chemical fact follows from the orthonormality condition

n∑
i=1

c(i)
r c

(i)
s = δrs, (4.9)

where δrs is the Kronecker delta. Hence, the maximum bond number can be converted from
a sum over bonding to a sum over all molecular orbitals:

Nπ
r =

∑
i : λi>0

2λi
(
c(i)
r

)2
= −

∑
i : λi≤0

2λi
(
c(i)
r

)2
=

n∑
i=1
|λi|

(
c(i)
r

)2
. (4.10)
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The expression on the right-hand size of (4.10) removes the dependence of maximum bond
number on occupied versus empty orbitals. It is similar in form to the definition of graph
energy [97]:

EG =
n∑
i=1
|λi| , (4.11)

which is the maximum possible Hückel π energy for a given molecule (corresponding to
full occupation of the n+ bonding orbitals). In both (4.10) and (4.11) all eigenvectors and
eigenvalues are treated on an equal footing.

The formulation (4.8) in terms of positive eigenvalues also has an implication for the
participation of given vertices in each eigenvector/molecular orbital. Recall that in the
language of graph theory as developed by Sciriha (see Section 2.6.3), a vertex r is core for
the eigenspace E(λi) (i.e., the set of orbitals corresponding to energy α + λiβ) if there is
a non-zero entry c(i)

r for some vector within the eigenspace; otherwise the vertex is core-
forbidden. The formulation (4.8) shows that eigenvectors contribute to Nπ

r if and only if
λi > 0 and r is core in eigenspace E(λi).

An easy upper bound on Nπ
r follows from the equation (4.8):

Proposition 4.1. Let G be a Hückel graph. Then

Nπ
r ≤ 2λ1(G). (4.12)

Proof. As λ1 > λi for all i 6= 1 and ∑n
k=1

(
c(k)
r

)2
= 1:

Nπ
r =

n+∑
i=1

2λi
(
c(i)
r

)2
≤

n+∑
i=1

2λ1
(
c(i)
r

)2

≤
n∑
i=1

2λ1
(
c(i)
r

)2
= 2λ1.

(4.13)

This is typically a very loose upper bound. It can be improved for bipartite graphs (al-
ternant hydrocarbons). The eigenvalues of bipartite graphs obey Theorem 3.1: if λ is an
eigenvalue, then so is −λ, and an eigenvector for λ can be converted to an eigenvector for
−λ by reversing the signs of the entries for one partite set of vertices. Zero eigenvalues may
be self-paired.

An implication for eigenvector entries is that the normalisation condition can be refined,
since

n∑
i=1

(
c(i)
r

)2
= 1 =

∑
k∈K+

(
c(k)
r

)2
+
∑
k∈K0

(
c(k)
r

)2
+

∑
k∈K−

(
c(k)
r

)2
(4.14)

and ∑
k∈K+

(
c(k)
r

)2
=

∑
k∈K−

(
c(k)
r

)2
≤ 1

2 , (4.15)

where K+ = {k | λk > 0}, K− = {k | λk < 0} and K0 = {k | λk = 0}. The upper bound
(4.12) is then improved for bipartite graphs:
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Proposition 4.2. Let G be a Hückel graph of an alternant hydrocarbon. Then

Nπ
r ≤ λ1(G). (4.16)

�

This bound is sharp in the case that G is bipartite with exactly one positive eigenvalue,
and where vertex r is core forbidden in the eigenspace E(0). In Section 2.6.1 we have
described the spectra of bipartite graphs. Star graphs K1,n−1 on n vertices are bipartite,
have unique positive eigenvalues λ1(K1,n−1) =

√
n− 1 (note that n − 1 is the degree of

the central vertex) and when n0 > 0 (n0 > 0 if and only if n > 2) that central vertex is
core-forbidden for eigenvalue 0. Therefore, all star graphs have a vertex (the central vertex)
with Nπ

r = λ1 =
√
n− 1, providing the lower bounds (and conjectured exact values) to the

best Nmax for sp2 carbon atom of
√

1,
√

2 and
√

3 (see Table 4.1), and in general
√
n− 1

for the set of all graphs, chemical and otherwise, on n vertices.
Smith has characterised graphs with precisely one positive eigenvalue [189]:

Theorem 4.3 (Theorem 6.7 in [49]). A graph has exactly one positive eigenvalue if and
only if its non-isolated vertices form a complete multipartite graph. �

There are only 9 complete multipartite subcubic graphs (with at least one edge). All of them
are shown in Figure 4.3. Vertices that realize the maximum bond number are coloured red.
Table 4.2 displays the maximum bond number for each of those graphs. They are sorted

Figure 4.3: All complete multipartite chemical graphs.

by Nπ(G) in decreasing order. Hence, we can state the following:

Proposition 4.4. The Moffitt value of
√

3 for the maximum π bond order is the best over
the set of all chemical graphs with exactly one positive eigenvalue, i.e., of all π systems with
exactly one bonding orbital. �

There are infinitely many graphs with exactly one positive eigenvalue, but only a finite
number of such graphs exist when the vertex degree is bounded. We will show that there
are finitely many graphs with bounded vertex degree and bounded number of positive
eigenvalues.
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Graphs:
K1,1 K1,2 K1,3

Eigenvalues:

λ2 = −1

λ1 = +1��

λ3 = −
√

2
λ2 = 0�

λ1 =
√

2��

λ4 = −
√

3
λ2 = λ3 = 0� �

λ1 =
√

3��

Eigenvectors:

1√
2 − 1√

2

1√
2

1√
2

−1
2

1√
2 −

1
2

1
2

0 −1
2

1
2

1√
2

1
2

0

2√
6

− 1√
6− 1√

6

0
0

1√
2− 1√

2

1√
2

− 1√
6

− 1√
6− 1√

6

1√
2

1√
6

1√
6

1√
6

Bond number N•(π):
2(1)

(
1√
2

)2
= 1 2(

√
2)
(

1√
2

)2
=
√

2 2(
√

3)
(

1√
2

)2
=
√

3

Table 4.1: Bond number of K1,1, K1,2 and K1,3

Lemma 4.5. The path Pn has bn2 c positive eigenvalues.

Proof. In Section 2.6.1 we showed that the spectrum of Pn contains values 2 cos
(
πj
n+1

)
for

j = 1, . . . , n. Note that 0 < πj
n+1 < π for 1 ≤ j ≤ n. The value 2 cos

(
πj
n+1

)
is greater than

zero if πj
n+1 <

π
2 , i.e., if j <

n+1
2 . This is equivalent to j ≤ bn2 c.

There is a straightforward upper bound on the largest possible order of a connected
graph G of maximum degree ∆(G) and diameter diam(G). If ∆(G) = 1 then G ∼= K2 and
diam(G) = 1 which is a trivial observation.
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G Nπ(G)
K1,3

√
3 1.732051

K1,1,2
17+9

√
17

34 1.591410
K1,1,1,1

3
2 1.500000

K1,2
√

3 1.414214
K1,1,1

4
3 1.333333

K2,3
√

6
2 1.224745

K1,1 1 1.000000
K2,2 1 1.000000
K3,3 1 1.000000

Table 4.2: Bond numbers of chemical graphs with one bonding orbital.

Lemma 4.6 ([139]). Let G be a graph with ∆(G) ≥ 2. Then

|V (G)| ≤

1 + ∆(G) (∆(G)−1)diam(G)−1
∆(G)−2 if ∆(G) > 2;

2 diam(G) + 1 if ∆(G) = 2.
(4.17)

�

Lemma 4.6 tells us that there are only finitely many graphs with a given maximum degree
and diameter. Equation (4.17) is called the Moore bound. We are ready to prove the
following theorem:

Theorem 4.7. There exist finitely many graphs with a prescribed maximum degree ∆ which
have n+ positive eigenvalues.

Proof. Let us assume that there are infinitely many such graphs, i.e., the set

G = {G | G has n+ positive eigenvalues and maximum degree ∆}

is infinite. Then we can choose an arbitrarily large graph (i.e., of orbitrary large order) from
G. From Lemma 4.6 it follows that we can choose a graph with arbitrary large diameter
from the set G.

Let G ∈ G be a graph with diam(G) ≥ 2n+ +1. This means that there exist two vertices
u, v ∈ V (G) such that d(u, v) = 2n+ + 1. Let u = u0, u1, u2, . . . , u2n+ , u2n++1 = v be a
shortest (u, v)-path and let H be a subgraph of G induced on vertices {u0, u1, . . . , u2n++1}.
Clearly, H ∼= P2n++2. From Lemma 4.5 and Corollary 2.15 it follows that G has at least
b2n++2

2 c = n+ + 1 positive eigenvalues. We have arrived at a contradiction which means
that the set G must be finite.

From Theorem 4.7 we immediately obtain:

Corollary 4.8. There are finitely many chemical graph with a prescribed number, n+, of
positive eigenvalues. �
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Corollary 4.8 implies that we can enumerate all chemical graphs with a given number of
positive eigenvalues, just as we did in the case of n+ = 1 above. Efforts to obtain a general
proof of a statement equivalent to Proposition 4.4 for all n+ > 1 have not succeeded so far,
and we turn now to computer-aided search for higher values of Nπ

max.

4.2 Computer Searches
Complete sets of chemical graphs on 2 ≤ n ≤ 20 vertices were generated using the geng
program. In each search, the bond number for each graph maximised with respect to
electron count and choice of vertex was calculated by using the numpy.linalg.eigh function
[118, 190] which in turn uses the syevd function from LAPACK [4]. This routine uses
a divide and conquer algorithm to compute eigenvalues and eigenvectors. A specialised
library for arbitrary precision arithmetic called mpmath [117] was used where necessary
to separate contenders for best graph.

Definition 4.2. A crippled caterpillar on n vertices is a graph G with

V (G) = {v0, v1, . . . , vn−1}

and

E(G) = {vi−1vi | 1 ≤ i ≤ n− 1 ∧ i mod 3 6= 0} ∪ {vi−2vi | 2 ≤ i ≤ n− 1 ∧ i mod 3 = 0}.

Definition 4.3. A kite graph on n ≥ 5 vertices is a graph G with

V (G) = {v0, v1, . . . , vn−1}

and

E(G) = {v0v2, v0v3, v1v2, v1v3, v2v4, v3v4} ∪ {vi−1vi | 5 ≤ i ≤ n− 1 ∧ i mod 3 6= 1}
∪ {vi−2vi | 7 ≤ i ≤ n− 1 ∧ i mod 3 = 1}.

We denote the crippled caterpillar on n vertices by CriCat(n) and the kite graph on n
vertices by Kite(n).

Chemical graphs that attain the maximal bond number are listed in Table 4.3 and drawn
on Figure 4.4. We can state the following:

Proposition 4.9. No chemical graph with a π bond number exceeding the conjectured
√

3
global maximum exists in the range 2 ≤ n ≤ 20. �

Let us examine the graphs that realize the maximal bond number for a given n. By
observing Table 4.3 we anticipate the following:

Conjecture 4.3. Among all chemical graphs on n, n ≥ 2, vertices, the graph that attains
the maximum π bond number is the kite graph for the values of n ≥ 14 where n mod 3 = 2,
and the crippled caterpillar for all other values of n. �
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n maxrNπ
r Graph

2 1.00000000 CriCat(2) ∼= K2
3 1.41421356 CriCat(3) ∼= P3
4 1.73205081 CriCat(4) ∼= K1,3
5 1.68924640 CriCat(5)
6 1.70130162 CriCat(6)
7 1.70710678 CriCat(7)
8 1.70481999 CriCat(8)
9 1.70573213 CriCat(9)
10 1.70609618 CriCat(10)
11 1.70590690 CriCat(11)
12 1.70599266 CriCat(12)
13 1.70602352 CriCat(13)
14 1.70601452 Kite(14)
15 1.70601400 CriCat(15)
16 1.70601701 CriCat(16)
17 1.70601642 Kite(17)
18 1.70601604 CriCat(18)
19 1.70601636 CriCat(19)
20 1.70601631 Kite(20)

Table 4.3: Chemical graph on n vertices that attains the maximal bond number.

n maxrNπ
r Graph

14 1.70601452 CriCat(14)
17 1.70601642 CriCat(17)
20 1.70601631 CriCat(20)

Table 4.4: Chemical trees on 14, 17 and 20 vertices that attain the maximal bond number.

Let us restrict our attention to chemical trees. Almost all graphs in Table 4.3, except for
n ∈ {14, 17, 20}, are trees. If a tree attains the maximal π bond number among all chemical
graphs then it clearly attains the maximal value within the subfamily of chemical trees. In
Table 4.4 only those trees are listed which are not already included in the list of chemical
graphs. See also Figure 4.5 for their drawings. We see that all chemical trees up to 20
vertices are crippled caterpillars and we can pose the following conjecture:

Conjecture 4.4. Among all chemical trees on n, n ≥ 2, vertices, the crippled caterpillar
obtains the maximum π bond number. �

In Section 3.3 we presented fullerenes which are an important class of chemical graphs. The
search for graphs that attain the maximal bond number was done in the class of fullerenes
on 20 ≤ n ≤ 100 vertices. The results are in Table 4.5. The naming convention for fullerenes
in this table is n:id, where:

(i) n is the number of its vertices and
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(a) CriCat(2) (b) CriCat(3) (c) CriCat(4) (d) CriCat(5) (e) CriCat(6)

(f) CriCat(7) (g) CriCat(8) (h) CriCat(9)

(i) CriCat(10) (j) CriCat(11) (k) CriCat(12)

(l) CriCat(13) (m) Kite(14)

(n) CriCat(15) (o) CriCat(16)

(p) Kite(17) (q) CriCat(18)

(r) CriCat(19) (s) Kite(20)

Figure 4.4: Chemical graph on n vertices that attains the maximal bond number.

(ii) id is the place in which this fullerene appears when all fullerenes on n vertices are
generated by the fullgen program.

The symmetry group of each fullerene is also given in the Table 4.5. Their drawings can
be found in Appendix B. We can state the following:

Proposition 4.10. No fullerene graph with a π bond number exceeding the conjectured
√

3
global maximum exists in the range 20 ≤ n ≤ 100. �

We also searched for fullerenes that attain the minimal number maxrNπ
r among all fullerenes

on n vertices. Results are presented in Table 4.6. Their drawings can also be found in Ap-
pendix B.

When we examine the graphs in Table 4.5 we see that the vertex that maximizes the
bond number is always incident to hexagonal faces only, unless the pentagonal faces are
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(a) CriCat(14)

(b) CriCat(17)

(c) CriCat(20)

Figure 4.5: Chemical trees on 14, 17 and 20 vertices that attain the maximal bond number.

distributed in such a way that there do not exist vertices that are incident to three hexagonal
faces. We pose the following conjecture:

Conjecture 4.5. If a fullerene graph F has a non-empty set of vertices V ⊂ V (F) that are
incident to three hexagonal faces then any vertex that maximises the Coulson bond number
in F will be contained in V. �

Let us compare fullerenes in Table 4.5 and Table 4.6. The order of the symmetry group of
the fullerene that minimises the maximal bond number is in most cases (but not always)
larger than the order of the symmetry group of the fullerene that attains the maximal
bond number. Symmetry is apparently not an advantage if we are trying to maximise the
maximal bond number. Intuitively speaking, many vertices have to sacrifice in order for one
chosen vertex to succeed and accumulate enough charge. If there are large vertex orbits,
this prevents the possibility of the Musketeers’ “All for one, and one for all!” principle.
We also see that certain types of capped nanotubes occur frequently in the Table 4.6.
If n ≡ 0 (mod 12), the fullerene that minimizes the maximal Coulson bond order is the
nanotube that is capped with the patch in Figure 4.6(a), except for n = 60 when the
buckyball overtakes the tube. However, the capped nanotube is the third best fullerene

(a) (b) (c)

Figure 4.6: Caps of certain nanotubes that appear frequently in the Table 4.6.

that minimizes the maximal Coulson bond number among all fullerenes on n = 60 vertices.
That nanotube has the D6d symmetry if n ≡ 0 (mod 24) and the D6h symmetry if n ≡ 12
(mod 24). If n ≥ 60 and n ≡ 2 (mod 12) then the fullerene that minimizes the maximal
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n maxrNπ
r Graph

20 1.47082039 20:1 (Ih symmetry)
24 1.50852610 24:1 (D6d symmetry)
26 1.53611943 26:1 (D3h symmetry)
28 1.55439908 28:2 (D2 symmetry)
30 1.56881522 30:2 (C2v symmetry)
32 1.58365220 32:2 (D3h symmetry)
34 1.58171525 34:5 (C3v symmetry)
36 1.58154470 36:7 (C1 symmetry)
38 1.58450304 38:12 (C2v symmetry)
40 1.58370654 40:31 (Cs symmetry)
42 1.58452376 42:21 (C1 symmetry)
44 1.58445872 44:1 (C2v symmetry)
46 1.58386557 46:50 (Cs symmetry)
48 1.58397604 48:137 (Cs symmetry)
50 1.58474274 50:55 (C3v symmetry)
52 1.58421130 52:128 (C1 symmetry)
54 1.58425237 54:194 (C1 symmetry)
56 1.58418419 56:293 (Cs symmetry)
58 1.58436088 58:255 (Cs symmetry)
60 1.58451202 60:359 (Cs symmetry)
62 1.58414014 62:493 (C1 symmetry)
64 1.58436765 64:1481 (Cs symmetry)
66 1.58408912 66:3652 (C1 symmetry)
68 1.58428693 68:1959 (C1 symmetry)
70 1.58442267 70:4087 (Cs symmetry)
72 1.58442937 72:5633 (C1 symmetry)
74 1.58445980 74:5814 (D3h symmetry)
76 1.58458610 76:9132 (Td symmetry)
78 1.58439360 78:10288 (Cs symmetry)
80 1.58444297 80:11391 (C3v symmetry)
82 1.58438720 82:13243 (C1 symmetry)
84 1.58434577 84:14510 (C1 symmetry)
86 1.58434048 86:15156 (C1 symmetry)
88 1.58436022 88:14729 (C1 symmetry)
90 1.58438207 90:16030 (C1 symmetry)
92 1.58433751 92:16163 (C1 symmetry)
94 1.58421952 94:47431 (Cs symmetry)
96 1.58424765 96:126731 (Cs symmetry)
98 1.58422793 98:101379 (C1 symmetry)
100 1.58421996 100:186008 (C1 symmetry)

Table 4.5: Fullerenes that attain the maximal bond number.
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n maxrNπ
r Graph

20 1.47082039 20:1 (Ih symmetry)
24 1.50852610 24:1 (D6d symmetry)
26 1.53611943 26:1 (D3h symmetry)
28 1.54956698 28:1 (Td symmetry)
30 1.54522586 30:1 (D5h symmetry)
32 1.55434763 32:4 (D3d symmetry)
34 1.56340035 34:1 (Cs symmetry)
36 1.55033775 36:1 (D6h symmetry)
38 1.56217235 38:8 (C2 symmetry)
40 1.55432207 40:34 (Td symmetry)
42 1.56572204 42:39 (D3 symmetry)
44 1.55676795 44:52 (D3h symmetry)
46 1.57356433 46:44 (C2 symmetry)
48 1.56538961 48:1 (D6d symmetry)
50 1.56089506 50:105 (D5h symmetry)
52 1.57387513 52:140 (C2 symmetry)
54 1.57297777 54:30 (C2v symmetry)
56 1.57396484 56:311 (D3 symmetry)
58 1.57540560 58:794 (C1 symmetry)
60 1.55269340 60:936 (Ih symmetry)
62 1.57426202 62:1612 (D3h symmetry)
64 1.57411256 64:150 (Cs symmetry)
66 1.57491926 66:56 (C2v symmetry)
68 1.57424416 68:4656 (D3 symmetry)
70 1.57382683 70:1 (D5h symmetry)
72 1.57046136 72:1 (D6d symmetry)
74 1.57491346 74:9249 (D3h symmetry)
76 1.57468957 76:7956 (D2d symmetry)
78 1.57257030 78:1992 (D3h symmetry)
80 1.57425326 80:18087 (D5d symmetry)
82 1.57544373 82:36884 (C2 symmetry)
84 1.57118716 84:1 (D6h symmetry)
86 1.57456053 86:40357 (D3h symmetry)
88 1.57479103 88:50148 (C2v symmetry)
90 1.57319886 90:54468 (D5h symmetry)
92 1.57465797 92:43314 (D3 symmetry)
94 1.57568328 94:75372 (C1 symmetry)
96 1.57162575 96:1 (D6d symmetry)
98 1.57458570 98:142141 (D3h symmetry)
100 1.57510187 100:1 (D5d symmetry)

Table 4.6: Fullerenes that minimize the maximal bond number.
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Coulson bond number is the nanotube with the D3h symmetry that is capped with the
patch in Figure 4.6(b). For n = 70 and n = 100 the nanotube capped with the patch in
Figure 4.6(c) emerges. It has the D5h symmetry for n = 70 and the D5d symmetry for
n = 100.

We also see that fullerene graphs are not good candidates as families of chemical graphs
that would maximise the Coulson bond number.

The next family under consideration are benzenoid graphs. They are extensively treated
in Chapter 5. The results are in Table 4.7. Benzenoids on up to n = 32 vertices were
considered. The second column in the table gives the number of non-equivalent benzenoids
on n vertices. Benzenoids are given via their boundary-edges codes (see Definition 5.14).
For each n ≤ 32, the table lists both the benzenoid that obtains the maximal Coulson bond
number and the one that minimizes it. Figures can be found in Appendix B. Benzenoids
were generated by our own computer program. The algorithm is described in Section 5.5.

n Count maxGNπ(G) BEC (G) minGNπ(G) BEC (G)
6 1 1.33333333 6 1.33333333 6
10 1 1.62763379 55 1.62763379 55
13 1 1.63054753 444 1.63054753 444
14 2 1.62631158 5252 1.62334845 5351
16 1 1.62132013 4343 1.62132013 4343
17 1 1.63220884 52441 1.63220884 52441
18 5 1.62715855 532521 1.59242502 515151
19 1 1.63164451 43342 1.63164451 43342
20 3 1.63130593 523431 1.62228423 514341
21 6 1.63182435 5241521 1.63060923 5314421
22 15 1.63238336 424242 1.62191039 53215321
23 4 1.63206671 5142431 1.63032477 4413431
24 15 1.63672514 44224411 1.59253929 51415141
25 27 1.63252587 4323422 1.62993398 521521521
26 46 1.63273787 52242421 1.59980247 5151151511
27 26 1.63584712 442234311 1.62969256 521513421
28 77 1.63635309 5211442241 1.61604295 51333331
29 127 1.63223591 514224321 1.62602800 53141351221
30 189 1.63620345 4422243311 1.59179608 515121515121
31 159 1.63575386 52311442231 1.62362874 433233411
32 385 1.63644271 532114422411 1.59969316 515114151411

Table 4.7: Benzenoids and the maximum Coulson bond number.



Chapter 5

Hexagonal Systems

5.1 Hexagonal systems from a chemical viewpoint
Benzenoid hydrocarbons are important well studied compounds [58, 57], important on
their own right, and now as mimics of graphene. In their monograph from 1989 [102],
Gutman and Cyvin provide an in-depth treatment of this subject. There, they define
benzenoid hydrocarbons as condensed polycyclic unsaturated fully conjugated hydrocarbons
composed exclusively of six-membered rings. While the above definition tells a lot to a
chemist, it might cause discomfort to pure mathematicians and computer scientists. We
will therefore explain the above definition word by word. Hydrocarbons are, as the name
suggests, chemical compounds consisting of carbon and hydrogen atoms only. An example
is ethane with chemical formula C2H6 whose skeletal formula is depicted in Figure 5.1(a).
Another example is propene with chemical formula C3H6, depicted in Figure 5.1(b). The

(a) Ethane (b) Propene

Figure 5.1: Two examples of simple hydrocarbons.

carbon framework of a hydrocarbon is interconnected with strong σ-bonds (think of it as a
simple graph). Each hydrogen is attached to a certain carbon (with a σ-bond). There may
be only one σ-bond between a pair of carbon atoms and each carbon atom may form at most
four σ-bonds. Some bonded pairs of carbons may be connected with π-bonds (interaction
between p orbitals) which count towards the total valency of four. The π-bonds are less
strong than σ-bonds, giving rise to double and triple bonds. Unsaturated hydrocarbons are
those which contain at least one double or triple bond. Whilst, ethane is saturated, propene
is not. According to [138], a π-conjugated system is a molecule whose carbon framework
may be represented as a system of alternating single and double bonds, as in the case of

115
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propene. However, the distribution of the π-electrons is not accurately represented by a
simple structural formula involving full double bonds. Instead, we should think of a π-
conjugated hydrocarbon as a carbon framework with one p orbital at each carbon atom
contributing one electron to the shared electron cloud. Polycyclic means that one or more
cycles may be present in the carbon framework (see the example in Figure 5.2). Note that
this compound possesses 5-membered rings and is therefore not a benzenoid hydrocarbon.
In the chemical literature, one often encounters polycyclic aromatic hydrocarbons, often

Figure 5.2: Pentalene

abbreviated as PAHs, which is a large class of organic molecules. PAHs are aromatic
by definition. Because benzenoid hydrocarbons include highly reactive compounds such
as heptacene or triangulene, they are not a proper subclass of PAHs. Nevertheless, the
majority of benzenoid hydrocarbons that were experimentally studied so far are a fortiori
stable compounds.

Another restriction is that the molecules of benzenoid hydrocarbons are planar (or rea-
sonably close to that). Helicenic (e.g. heptahelicene) compounds are thus not considered as
benzenoids. Gutman and Cyvin [102] state that in the early 1990s around 300 benzenoid
hydrocarbons were known. PAHs and benzenoid hydrocarbons can be found among prod-
ucts of incomplete combustion of organic materials. Evidence suggest that they can be
found in tar and in small amounts everywhere in the environment, even in food that has
been processed by frying and roasting. A number of benzenoid hydrocarbons have been
discovered to be carcinogenic. They can be found (amongst other lethal substances) in
tobacco smoke.

Our purpose is to study a purely mathematical model for these compounds. One possible
route to construction of such a model is via benzenoid graphs. Some authors introduce them
as surfaces with boundary and call them benzenoid systems (or hexagonal systems). We
will also take the latter approach and call these objects benzenoids.

5.2 The infinite hexagonal grid
To define the infinite hexagonal grid, we will use a different definition of a (multi)graph. In
this definition, edges have their own identity:

Definition 5.1. A (multi)graph is an ordered triple G = (V,E, r), where V is a set of
vertices, E is a set of edges and r : E →

(
V
2

)
∪ V is a mapping that assigns end vertices to

each edge.
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Note that this definition also allows parallel edges and loops. The set(
V

2

)
∪ V = {{u, v} | u, v ∈ V }, (5.1)

i.e., an edge may only have one end vertex in which case the edge is called a loop. Now we
can define the infinite hexagonal lattice [106]:

Definition 5.2. The infinite hexagonal lattice G(H) is an infinite graph where

V = Z× Z× {0, 1},
E = Z× Z× {0, 1, 2},

and r : E →
(
V
2

)
∪ V is defined as

r (ξ, η, ν) =


{(ξ, η, 0), (ξ − 1, η, 1)}, if ν = 0;
{(ξ, η, 0), (ξ, η, 1)}, if ν = 1;
{(ξ + 1, η − 1, 0), (ξ, η, 1)}, if ν = 2.

(5.2)

The graph G(H) does not contain loops or parallel edges. It is clearly a cubic graph. Note
that G(H) does not possess any geometric information. To obtain the infinite hexagonal
grid, we have to embed it into the Euclidean plane R2. Let ϕ : V (G(H))→ R2 be a mapping
that assigns coordinates to each vertex of G(H) that is defined as:

ϕ (ξ, η, ν) =


(√

3ξ +
√

3
2 η,

3
2η + 1

)
, if ν = 0;(√

3ξ +
√

3
2 η +

√
3

2 ,
3
2η + 1

2

)
, if ν = 1.

(5.3)

Each edge e ∈ E(G(H)) is embedded as a straight line segment between the two points
that correspond to the end vertices of e. The infinite hexagonal lattice with the above
embedding is a plane graph which is called the infinite hexagonal grid and is denoted with
H (see Figure 5.3). The G(H) is a bipartite graph with the bipartition V1 = Z × Z × {0}
and V2 = Z×Z×{1}. The vertices of V1 and V2 are coloured orange and green, respectively,
in Figure 5.3.

Every face of H is a regular hexagon with a unit-length side. Those hexagons can be
labeled with elements of the set Z × Z. The hexagon with the label (0, 0) has its centre
in coordinates (0, 0) of the plane R2. The hexagon labeled with (ξ, η) has its centre in
coordinates

(√
3ξ +

√
3

2 η,
3
2η
)
and is incident with the vertices

(ξ, η, 0), (ξ, η, 1), (ξ + 1, η − 1, 0), (ξ, η − 1, 1), (ξ, η − 1, 0) and (ξ − 1, η, 1). (5.4)

Hexagon (ξ, η) is incident with the edges

(ξ, η, 0), (ξ, η, 1), (ξ, η, 2), (ξ + 1, η − 1, 0), (ξ, η − 1, 1) and (ξ − 1, η, 2). (5.5)

The faces of H are vertices of its plane dual H∗ which is a 6-regular plane triangulation.
The vertex (ξ, η) ∈ V (H∗) is adjacent to vertices

(ξ, η + 1), (ξ + 1, η), (ξ + 1, η − 1), (ξ, η − 1), (ξ − 1, η) and (ξ − 1, η + 1). (5.6)



118 CHAPTER 5. HEXAGONAL SYSTEMS

Figure 5.3: The infinite hexagonal grid H.

5.3 Mathematical treatment of hexagonal systems
Traditionally, a benzenoid system B is a collection of hexagons that constitute a simply
connected bounded region of the infinite hexagonal grid H in the Euclidean plane. Other
equivalent definitions are also possible. For a complete treatment of this topic, see [102].
Many authors consider benzenoids as plane graphs. For instance, Hammack, Imrich and
Klavžar [106] define them as follows (also Definition C in [102]):

Definition 5.3. Let Z be a cycle of the infinite hexagonal grid H. A benzenoid graph is
formed by the vertices and edges of H lying on and in the interior of Z.

Take a benzenoid. Note that one of its faces, called the outer face, is unbounded. Moreover,
every edge is incident to exactly two distinct faces (of which one may be the outer face).
Every vertex is incident to 2 or 3 edges. Therefore, a benzenoid graph is 2-connected and
2-edge-connected. In a chemical context, we use terms atom and bond as synonyms for
vertex and edge, respectively. Note that a benzenoid graph is bipartite, as it is a subgraph
of G(H).

Another way to define benzenoids is via polygonal surfaces (see Section 2.2):

Definition 5.4. A benzenoid is a polygonal surface consisting of hexagons that can be
embedded in the Euclidean plane such that all hexagons are regular.

Note that if all hexagons of a polygonal surface are regular then their sides have equal length.
Without this condition, we would obtain a much larger class of surfaces with boundary that
also includes helicenes amongst other creatures. If we also dropped the condition that the
polygonal surface can be embedded in the Euclidean plane then the class of such surfaces
would be even larger.

Example 5.1. Figure 5.4 shows all (non-equivalent) benzenoids with up to 4 hexagons.
Figure 5.5 shows a benzenoid with 11 hexagons. �
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(a) benzene (b) naphthalene (c) anthracene (d) phenanthrene

(e) phenalene (f) pyrene (g) naphthacene (h) tetraphene

(i) chrysene (j) benzo[c]phenanthrene (k) triphenylene (l) C17H11

Figure 5.4: All non-equivalent benzenoids with up to 4 hexagons. (Their names are taken
from reference [102].)

Figure 5.5: A benzenoid with 11 hexagons, called tetrabenzoheptacene [154].

Due to their importance in chemistry several benzenoid families have been studied in
the past in addition to cata- and peri-condensed dichotomy (see Definition 5.12). Their
Kekulé structures [31], symmetry groups [161] and other properties have been studied [37,
46, 48, 102, 171, 172]. We will consider some of them in the remainder of this chapter.

Another important class of polycyclic hydrocarbons that was widely studied in the past
are coronoids [51, 52]. Intuitively speaking, a coronoid is a “benzenoid with holes”, i.e., a
benzenoid with some internal bonds and atoms removed. To define the class of coronoids
precisely, some additional restrictions are needed. Normally, the resulting structure must
be composed entirely of hexagons and connected if it is to be of interest in the theory
of conjugated carbon frameworks. Although the two plane graphs in Figure 5.6 can be
obtained from benzenoids by removing vertices and edges, they are not coronoids. This
motivates the following mathematical formalisation of coronoids and benzenoids.
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c

(a)

c

(b) Biphenyl

Figure 5.6: These two plane graphs are not coronoids. The edge denoted by c (in both
examples) is not incident to two distinct faces.

5.4 New approach towards hexagonal systems
We will consider the infinite planar hexagonal grid H as a collection of hexagons. Let a and
b be two hexagons from H. We say that a and b are adjacent, and denote this by a ∼ b,
if and only if they are different and share an edge. If two distinct hexagons share an edge
we call them neighbours. The set of all neighbours of a will be denoted N(a). Note that
each hexagon of H has exactly 6 neighbours. Let K ⊆ H be a hexagonal system, i.e., an
arbitrary collection of hexagons from H. NK(a) will denote the set of those hexagons of
K that belong to N(a), i.e., NK(a) := N(a) ∩ K. We call them the neighbours of a in K.
Define equivalence relation ≡K as follows: for a, b ∈ K it holds that a ≡K b if there exists
a sequence c0 = a, c1, c2, . . . , cm = b such that ci−1 ∼ ci for i = 1, 2, . . . ,m and ci ∈ K
for i = 0, 1, . . . ,m. In particular, this means that it is possible to move from hexagon a
to hexagon b along a pathway composed of adjacent hexagons that all belong to K (see
Figure 5.7). Note that a ≡K b if a ∈ NK(b) and b ∈ K. Also, it is easy to see that K ⊆ L
and a ≡K b imply a ≡L b. Hexagonal system K is naturally decomposed into equivalence

a h1 h2

h3 h4

h5 h6

b

Figure 5.7: A path of hexagons h1, h2, . . . , h6 joining hexagon a to hexagon b.

classes {Ci}i∈C(K), called connected components. Of course, K = ∪i∈C(K)Ci. If K is finite,
the number of its connected components, i.e., the cardinality of C(K), is also finite. A
hexagonal system is connected if it comprises only one connected component.

With respect to the number and positions of its neighbours, a hexagon of a connected
hexagonal system K (with h ≥ 2 hexagons) can be in one of 12 possible modes [102]. For
example, a hexagon is in L1 mode if it has only one neighbour. The complete list of modes
is given in Figure 5.8.

Lemma 5.1. Let K be a hexagonal system and {Ci}i∈C(K) its decomposition into equivalence
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Figure 5.8: Modes of hexagons.

classes. Let L be a connected hexagonal system. If L ⊆ K then L ⊆ Ci for some i ∈ C(K).

Proof. Suppose there exist hexagons hi ∈ L ∩ Ci and hj ∈ L ∩ Cj. Connectedness of L
implies hi ≡L hj. From L ⊆ K it follows that hi ≡K hj. A contradiction.

Lemma 5.2. Let K 6= ∅ be an arbitrary hexagonal system and a ∈ K any of its hexagons.
Then hexagon a belongs to some connected component Ci of K. Let b ∈ N(a) be any of the
neighbours of a in H. Then either b ∈ Ci or b ∈ K{. In other words, no hexagon of Ci is
adjacent to a hexagon of Cj if i 6= j.

Proof. Suppose there is a hexagon b ∈ Cj, i 6= j, such that b ∈ N(a). Then a and b are in
the same equivalence class by the definition of ≡K. A contradiction.

Lemma 5.3. Let K be an arbitrary non-empty hexagonal system that is a proper subset of
H, i.e., ∅ 6= K ⊂ H. Let Ca be any connected component of the complement K{. Then there
exists a hexagon ã ∈ Ca that is adjacent to some hexagon in K.

Proof. Let N(R) denote the set of all hexagons that are not contained inR and are adjacent
to some member of R, i.e., N(R) = (∪r∈RN(r)) \ R. Let a ∈ Ca and let P0 = {a}. Define
Pk = Pk−1 ∪N(Pk−1) for k ≥ 1.

It is clear that P0 ⊆ Ca. Let n be the smallest number such that Pn * Ca. Suppose that
such a number n exists. Note that Pn−1 ⊆ Ca. Then Pn contains some hexagon h /∈ Ca.
By Lemma 5.2, h ∈ K. By construction of family {Pk}k, there exists a hexagon ã ∈ Pn−1,
such that h ∈ N(ã).

Now suppose that the desired number n does not exist. This means that Pn ⊆ Ca for all
n. But ∪∞n=0Pn = H, i.e., for every h ∈ H there exists some number m, s.t. h ∈ Pm. Since
K is non-empty there is some hexagon k ∈ K ⊂ H and therefore k ∈ Pl for some number
l, which is a contradiction.

Definition 5.5. A finite connected hexagonal system K is called a (general) coronoid.

Definition 5.6. A finite connected hexagonal system K whose complement K{ is also con-
nected is called a benzenoid.
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We prove a useful lemma:

Lemma 5.4. Let K be any finite hexagonal system. Then the complement K{ of K consists
of finitely many, say d+ 1, d ≥ 0, connected components:

K{ = C∞ t C1 t C2 t · · · t Cd. (5.7)

Each of these components but one, denoted by C∞, is finite. Each of the finite components
Ci, 1 ≤ i ≤ d, is a coronoid.

Component C∞ is called the exterior of K and each Ci, 1 ≤ i ≤ d, is called a corona hole.
In the above expression t stands for disjoint union. The size of a coronoid K, denoted |K|,
is the cardinality of the set K, i.e., the number of hexagons it consists.

Proof. Let a be an arbitrary hexagon ofH. Let the family {Pi}∞i=0 be as defined in the proof
of Lemma 5.3. Since K is finite, there exists n ∈ N such that K ⊆ Pn. (More precisely, for
every k ∈ K there exists nk such that k ∈ Pnk . Take n := maxk∈K nk.) The complement
of P := Pn is contained in K{. Because P{ is connected, it is contained in a connected
components of K{. Denote this component by C∞. Note that this is the infinite component.
In addition to C∞, K{ may have more connected components. All of them (if there are any)
are contained in P . Each is finite, because P is finite. Their number is bounded by the
number of hexagons in P . Therefore, K{ has finitely many connected components.

The fact that all finite components are coronoids is clear from the definition of coronoids.

The above lemma does not apply to infinite hexagonal systems. (See Figure 5.9 for exam-
ples.)

K1 K2 K3

Figure 5.9: K1 consists of infinitely many disjoint infinite lines of hexagons. Its complement
has infinitely many connected components that are themselves infinite. K2 is obtained from
K1 by adding another line of hexagons with a different slope. The hexagonal system K2 is
a connected example. Hexagonal system K3 (half-plane) is infinite and its complement K{3
has a single connected component. In fact, a connected hexagonal system with arbitrary
many finite and arbitrary many infinite connected components can be obtained.

Lemma 5.5. Let K be a coronoid and let Ca and Cb be two connected components of its
complement K{. Let a ∈ Ca and b ∈ Cb. Then a ≡K∪Ca∪Cb b.

Components Ca and Cb in the above lemma may be either two corona holes or one corona
hole and the exterior of K.
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Proof. By Lemma 5.3 there exists ã ∈ Ca, such that ã ∈ N(ka) for some ka ∈ K. By
the same lemma, there exists b̃ ∈ Cb, such that b̃ ∈ N(kb) for some kb ∈ K. Since Ca is
a connected component, a ≡Ca ã. Similarly, b ≡Cb b̃. From ã ≡K∪Ca ka, b̃ ≡K∪Cb kb and
ka ≡K kb, it follows that a ≡K∪Ca∪Cb b.

Corollary 5.6. Let K be a coronoid and let Ca be a connected component of its complement
K{. Let a ∈ Ca and k ∈ K. Then a ≡K∪Ca k.

Proof. In the proof of Lemma 5.5 we have already shown the existence of ã ∈ Ca, such
that ã ∈ N(ka) for some ka ∈ K. From a ≡Ca ã, ã ≡K∪Ca ka and ka ≡K k, it follows that
a ≡K∪Ca k.

Theorem 5.7. Let K be a coronoid. The complement K{ of K has a finite number b(K) :=
d+ 1, d ≥ 0, of connected components B∞,B1,B2, . . . ,Bd such that

K{ = B∞ t B1 t B2 t · · · t Bd. (5.8)

Exactly one component, denoted B∞, is infinite and the other d components are finite, each
being a benzenoid. Moreover, B{∞ is also a benzenoid.

Proof. From Lemma 5.4, it immediately follows that K{ = B∞ t B1 t B2 t · · · t Bd, where
B∞ is an infinite and Bi, 1 ≤ i ≤ d, are finite connected components. We need to show
that each Bi, 1 ≤ i ≤ d, is a benzenoid.

It only remains to show that the complement B{i of Bi, 1 ≤ i ≤ d, is connected. From
H = K t K{ = K t (B∞ t B1 t B2 t · · · t Bd) it follow that

B{i = K t B∞ t B1 t B2 t · · · t Bi−1 t Bi+1 t · · · t Bd. (5.9)

Hexagonal systems K,B∞,B1, . . . ,Bi−1,Bi+1, . . . ,Bd are all connected. By Lemma 5.5 and
Corollary 5.6, their union is also connected.

To show that B{∞ is a benzenoid, we need to show that B{∞ and (B{∞){ are connected
and that B{∞ is finite. Since (B{∞){ = B∞, it is clearly connected. Since

B{∞ = K t B1 t B2 t · · · t Bd, (5.10)

it is connected by the same argument that worked for B{i above. Hexagonal systems
K,B1, . . . ,Bd are all finite and therefore their union B{∞ is also finite.

Definition 5.7. Let K be a coronoid. The benzenoid closure of K, denoted K, is the
intersection of all those benzenoids that include K as a subset, i.e.,

K =
⋂
{B | B is benzenoid ∧ K ⊆ B}. (5.11)

For a coronoid K we define Benz(K) = {B | B is benzenoid ∧ K ⊆ B}. This set will be
repeatedly used in several proofs that follow. Using this terminology, (5.11) from the above
definition can be written in a shorter form as K = ⋂Benz(K).

Lemma 5.8. The benzenoid closure K of a (general) coronoid K is a benzenoid. Moreover,
K = B{∞ = K t B1 t · · · t Bd, where K{ = B∞ t B1 t B2 t · · · t Bd as in Theorem 5.7.
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Proof. By Theorem 5.7, K{ = B∞tB1tB2t· · ·tBd, where B∞ is infinite and Bi, 1 ≤ i ≤ d,
are benzenoids. We will show that K = K ∪ B1 ∪ · · · ∪ Bd = B{∞.

Let L be an arbitrary benzenoid such that K ⊆ L. Then L{ ⊆ K{. Because L{ is
connected, it is contained in at most one of components B∞,B1,B2, . . . ,Bd. Since L{ is
infinite, L{ ⊆ B∞. Therefore,

K ∪ B1 ∪ B2 ∪ · · · ∪ Bd = B{∞ ⊆ (L{){ = L. (5.12)

This implies K ∪ B1 ∪ B2 ∪ · · · ∪ Bd ⊆ K.
By Theorem 5.7, B{∞ = K ∪ B1 ∪ · · · ∪ Bd is a benzenoid. Thus K ⊆ K ∪ B1 ∪ · · · ∪ Bd.

We have proved that K = K ∪ B1 ∪ · · · ∪ Bd, where K ∪ B1 ∪ · · · ∪ Bd is a benzenoid. This
proves existence, and also uniqueness, of K.

In the above proof of Lemma 5.8 we have also shown how to construct K for a given K. The
reader should note that in general case the intersection of two benzenoids is not necessarily
a benzenoid (see Figure 5.10).

Proposition 5.9. The benzenoid closure K 7→ K is an operation on the set of all coronoids
that satisfies the following three conditions:

(a) ∀K : K ⊆ K,

(b) ∀K,L : K ⊆ L =⇒ K ⊆ L, and

(c) ∀K : K = K.

Note that the co-domain of the mapping K 7→ K can be restricted to the set of all ben-
zenoids. This mapping is surjective and the preimage of every benzenoid is a finite set of
coronoids.

Proof. By definition, K = ⋂Benz(K). From the definition it follows directly that K ⊆ K.
Let us now show that K = K. By definition, K = ⋂Benz(K). Therefore K ⊆ K. Since

K is a benzenoid, K ∈ Benz(K). Therefore, K ⊆ K.
Finally, we will show that K ⊆ L ⇒ K ⊆ L. By definition, K = ⋂Benz(K) and

L = ⋂Benz(L). From K ⊆ L it follows that every element of Benz(L) is also an element
of Benz(K), i.e., Benz(L) ⊆ Benz(K). Therefore K ⊆ L.

We define another closure operation.

Definition 5.8. An alternative benzenoid closure K 7→ K̃ is a mapping on the set of all
coronoids that satisfies the following three conditions:

(i) ∀K : K̃ is benzenoid,

(ii) ∀K : K ⊆ K̃, and

(iii) ∀K : ∀benzenoid L : K ⊆ L =⇒ K̃ ⊆ L.

The following lemma tells us that this corresponds to an alternative definition of the ben-
zenoid closure operation.
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Lemma 5.10. Let K be a general coronoid. Then K̃ = K. With other words, benzenoid
closure operation and the alternative benzenoid closure operation coincide.

Proof. First, we will prove existence of K̃ by proving that K satisfies the three conditions
of Definition 5.8.

By Lemma 5.8, K is a benzenoid, so (i) holds. Proposition 5.9 tells us that K ⊆ K, so
(ii) also holds. It only remains to see that K ⊆ L =⇒ K ⊆ L for every benzenoid L.

Let L be any benzenoid such that K ⊆ L. By definition, L ∈ Benz(K). It is clear that
L ∈ Benz(K) implies K = ⋂Benz(K) ⊆ L.

In principle, there could exist some other benzenoid, different from K, which would also
satisfy the three conditions in Definition 5.8. We will show that this is not the case by
proving that every K̃ from Definition 5.8 is K.

Let L be any element of Benz(K). Condition (iii) implies that K̃ ⊆ L. Therefore
K̃ ⊆ ⋂Benz(K) = K. By condition (i) and (ii), K̃ is a benzenoid such that K ⊆ K̃. This
means that K̃ is a member of Benz(K). Clearly, K = ⋂Benz(K) ⊆ K̃. From K̃ ⊆ K and
K ⊆ K̃ it follows that K̃ = K which completes the proof.

Figure 5.10: The intersection of two benzenoids is not necessarily a benzenoid.

Lemma 5.11. The intersection of two benzenoids is a finite hexagonal system. Each of its
connected components is a benzenoid.

Proof. Let La and Lb be two benzenoids and let L = La∩Lb. Because La and Lb are finite,
L is also finite. It consists of finitely many (possibly 0) finite connected components. That
allows us to write L = K1 t K2 t · · · t Kd. To complete the proof, we have to show that
each K{i is connected.

By Lemma 5.4, K{i = C∞ t C1 t C2 t · · · t Cm. From Ki ⊆ L ⊆ La we obtain L{a ⊆ K{i .
Since L{a is connected and infinite, L{a ⊆ C∞. In addition to C∞, K{i may have 0 or more
other connected components. Suppose m ≥ 1.

By Lemma 5.3, there exists h ∈ C1 which is adjacent to some k ∈ Ki. Then h /∈ La or
h /∈ Lb. If h belonged to both La and Lb, then h ∈ Kj for some j. From h ∈ C1 ⊆ K{i , it
follows that j 6= i. But this contradicts Lemma 5.2, so h indeed belongs to at most one of
La or Lb. Without loss of generality, we can assume h /∈ La. In other words, h ∈ L{a ⊆ C∞.
This contradicts the fact that h ∈ C1.

This means that m = 0, implying K{i = C∞, and the proof is complete.

Look at Figure 5.11. Benzenoids K1 and K2 are not equal, i.e., K1 6= K2. For instance,
h1 ∈ K1 but h1 /∈ K2. If one would draw them on a piece of paper and cut them out, they
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h2h1

h4

h7h6

h5

h8h3

Figure 5.11: Benzenoids K1 = {h1, h2, h3, h4} and K2 = {h5, h6, h7, h8} are equivalent.

would coincide. This notion of coincidence can be precisely defined. One possible approach
is via isometries of the plane that map hexagons to hexagons. (For more details on this topic
see [94].) If the coordinate system is placed so that the origin is in the centre of a chosen
hexagon and if hexagons have sides of unit length then isometries φ1, φ2, φ3, φ4 : R2 → R2,
where

φ1(x, y) =
(
x+
√

3, y
)
,

φ2(x, y) =
(
x+

√
3

2 , y + 3
2

)
,

φ3(x, y) =
(
− x, y

)
, and

φ4(x, y) =
(
x · cos π

3 − y · sin
π
3 , x · sin

π
3 + y · cos π

3

)
generate a subgroup of the group of isometries of R2. Elements of this subgroup are precisely
those isometries that map hexagons to hexagons. Note that this group is not a subgroup of
the O(2), becuase there exist elements which do not fix any point of R2. However, there is
another approach which is purely combinatorial. Let Aut(H) be the group of symmetries
of the hexagonal grid, i.e.,

Aut(H) = {φ : H → H | φ is bijection ∧ ∀a, b ∈ H : φ(a) ∼ φ(b)⇔ a ∼ b}. (5.13)

Now, we can define:

Definition 5.9. Hexagonal systems K and L are equivalent, denoted K ∼= L, if there exists
a symmetry ψ ∈ Aut(H), such that ψ(K) = L.

Let K be a (general) coronoid. From Lemma 5.8 it follows that

K \ K = B1 t · · · t Bd (d ≥ 0), (5.14)

where each Bi is a benzenoid. The benzenoids Bi are called corona holes. They consist of
one or more hexagons. The (general) coronoids (a) and (b) in Figure 5.12 have two corona
holes each, whilst coronoid (c) has only one. Examples (b) and (c) are special in a sense. A
general coronoid is called degenerate if one of its corona holes is a single hexagon. This is
because such a corona hole has no interpretation in chemistry. (Recall that in a benzenoid
molecule, as opposed to a benzenoid graph, all vertices of degree 2 represent CH groups
and all of degree 3 represent C atoms. There is no notion of the infilling of each hexagon
having a physical meaning. Larger holes, with their internal H atoms or degree 2 vertices,
have a chemical meaning.) Otherwise it is called non-degenerate. Corona holes of size 1
will be called degenerate corona holes.
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Definition 5.10. Let K be any coronoid. The non-degenerate closure of K, NonDeg(K),
is the intersection of all those non-degenerate coronoids that include K as a subset, i.e.,

K =
⋂
{N | N is non-degenerate coronoid ∧ K ⊆ N}. (5.15)

Plainly speaking, it is the smallest non-degenerate coronoid which includes K. It is not
hard to see that NonDeg(K) can be obtained from K by adding to it exactly its degenerate
corona holes. Hereinafter, where we consider applications of this theory in chemistry, by
the word coronoid we will always mean a non-degenerate coronoid.

The definition of coronoids includes benzenoids as a special case.

Definition 5.11. A proper coronoid is a coronoid that is not also a benzenoid.

Using the terminology of topology one may say that the only difference between benzenoids
and proper coronoids is that both are connected, but the former are also simply connected.
To give a precise meaning to this, one has to consider benzenoids as surfaces with a bound-
ary. Plane graphs on their own are not sufficient model for coronoids. Some faces have
to be labelled as “not present”. We will call them holes. In this context, the outer face
of a coronoid is merely one of its holes. Chemists do not always distinguish between the
two models (coronoids as plane graphs and coronoids as surfaces with boundary); for them,
exactly those faces of length strictly greater than 6 are holes. In other words, they do
not recognise degenerate corona holes. As we will see in Chapter 6, when we generalise
coronoids to perforated patches, some care should be taken over this distinction.

We defined coronoids (and benzenoids) as subsets of hexagons in the Euclidean plane.
We may consider them as 2-dimensional cell complexes [109]. Cell complexes are a general-
isation of polygonal surfaces (defined in Section 2.2). In what follows, we will adopt some
topological terminology and notation. Recall that in Section 5.2 we obtained the infinite
hexagonal grid H by embedding the infinite cubic graph called hexagonal lattice in the
Euclidean plane. Vertices of the hexagonal lattice are 0-cells, edges are 1-cells and faces are
2-cells. Every edge of the hexagonal lattice is incident to exactly two distinct hexagonal
faces. Any two distinct faces can either share a single edge or nothing at all.

Let K be a coronoid. By our definition it is a collection of 2-cells. We can assign to K
the smallest subcomplex of the hexagonal grid which includes all hexagons (2-cells) of K.
Note that a subcomplex contains the closure of each of its cells. Its 1-skeleton is a graph
that is a subgraph of the hexagonal lattice consisting of those vertices and edges which are
incident with at least one hexagon of K. We will denote this graph by G(K) and call it a
skeleton in the general setting and a coronoid graph when we deal with coronoids. Note that
if H denotes the hexagonal grid, then G(H) is the hexagonal lattice. Note that Aut(G(H))
acts transitively on vertices of G(H). Elements of Aut(G(H)) are graph automorphisms.

Consider the three examples of coronoids on Figure 5.12. As in the case of benzenoids,
every edge is incident to exactly two distinct faces of which one may be a hole, but not
both. Every vertex is incident to either 2 or 3 edges. A coronoid graph is a 2-connected
and 2-edge-connected graph.

The edges of a coronoid graph are naturally divided into two types: internal and bound-
ary. An edge belonging to two (adjacent) hexagons is internal and an edge belonging to
only one hexagon is a boundary edge. Vertices of a coronoid graph can also be divided
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into internal and boundary. Internal vertices are incident with 3 internal edges. All other
vertices of G(K) are called boundary. Boundary vertices can be further divided into two
types: those of degree 2 and those of degree 3. A hexagon h of a coronoid K is internal if
|NK(h)| = 6. Otherwise it is a boundary hexagon. In other words, an internal hexagon is
surrounded by 6 internal edges. The subgraph of G(K) that consists of all boundary ver-
tices and edges will be called border of K and denoted ∂K. When K = {k} is a singleton,
we will write ∂k.

Definition 5.12. A benzenoid is called catacondensed if it has no internal vertices, and
pericondensed otherwise.

Pericondensed benzenoids can be further divided into two groups:

Definition 5.13. Pericondensed benzenoids which have internal hexagons are called cor-
pulent benzenoids. Those without internal hexagons are called gaunt benzenoids.

Example 5.2. The benzenoid B1 in Figure 5.13 is catacondensed, whilst, benzenoids B2
and B3 are pericondensed. Benzenoid B2 is gaunt and B3 is corpulent. �

Let us prove the following property of the infinite hexagonal grid:

Proposition 5.12. The girth of the infinite hexagonal lattice is 6, i.e.,

girth(G(H)) = 6. (5.16)

Let C be an arbitrary cycle of G(H). Then |C| = 6 if and only if there exists a hexagon
h ∈ H such that C = ∂h.

(a) (b) (c)

Figure 5.12: Three examples of general coronoids. The first is non-degenerate whilst the
second and third are degenerate.

(a) B1 (b) B2 (c) B3

Figure 5.13: A catacondensed, a gaunt and a corpulent benzenoid.
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Proof. Let h ∈ H be any hexagon. Then ∂h ∼= C6. We will show that there are no shorter
cycles and also that all 6-cycles are the borders of hexagonal faces of the hexagonal grid.

The distance between vertices u and v of a graph G is the length of the shortest path
between u and v in G. We will denote it by dG(u, v).

Owing to symmetry, to investigate the structural properties of cycles of G(H) it is
enough to investigate cycles that contain a given vertex u. Up to symmeties of G(H) there
is only one path of length 2. See Figure 5.14. Vertices u and v are not adjacent, so there

u

v

Figure 5.14: The only type of path of length 2 in G(H).

are no triangles in G(H). There are two possible paths of length 3 (see Figure 5.15). In

u

v

(a)

u
v

(b)

Figure 5.15: The two types of paths of length 3 in G(H).

both the endpoints are not adjacent, so there are no rectangles in G(H). Both paths of
length 3 can be extended in two ways yielding four paths of length 4 (see Figure 5.16). In

u

v

(i)

u

v

(ii)

u

v

(iii)

u v

(iv)

Figure 5.16: The four types of paths of length 4 in G(H).

all cases their endpoints are non-adjacent, so there are no 5-cycles in G(H). In cases (i),
(ii) and (iii) we have that d(u, v) = 4. Therefore, these paths cannot form 6-cycles. The
case (iv) can be extended to a 5-path in two ways (see Figure 5.17). In case (b), we have
that d(u, v) = 3, which means that no 6-cycle can be formed. In case (a), vertices u and
v are adjacent and therefore form a 6-cycle. We have examined all options and no other
6-cycles arise, which means that all of them can be obtained as borders of hexagons.

Note that every vertex of G(K) belongs to one, two or three 6-cycles and that every edge
of G(K) belongs to one or two 6-cycles. Because G(K) ⊆ G(H), every 6-cycle of G(K) is
also a 6-cycle of G(H). Therefore, for every 6-cycle C in G(K) there exists some h ∈ H,
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u v

(a)

u v

(b)

Figure 5.17: Paths of length 5 in G(H).

such that C = ∂h. Let u be an arbitrary vertex of G(K). It is incident with 3 hexagons,
say h1, h2 and h3, of H. By definition of skeleton, at least one of those hexagons must also
be in K. Without loss of generality h1 ∈ K. Therefore, u belongs to 6-cycle ∂h1. It may
also happen that h2 ∈ K and/or h3 ∈ K. Then vertex u also belongs to cycle ∂h2 and/or
∂h3. Let e be an arbitrary edge of G(K). There exist h1 ∈ H and h2 ∈ H such that e ∈ ∂h1
and e ∈ ∂h2. By definition of skeleton at least one of them also belongs to K. It may also
happen that both of them belong to K. We can now state the following proposition:

Proposition 5.13. Let K ⊆ H be an arbitrary coronoid. Then the following statements
are true:

(a) The graph G(K) is connected.

(b) For every edge e ∈ E(G(K)) there exists h ∈ K such that e ∈ ∂h.

(c) For every cycle C ⊆ G(K) the inequality |C| ≥ 6 holds. The equality is attained
if and only if there exists a hexagon h ∈ H such that C = ∂h. Moreover, if K is
non-degenerate then h ∈ K.

Proof. To show that G(K) is connected, we will find a (u, v)-path for any pair of vertices
u, v ∈ V (G(K)). We already know that there exist hu and hv such that u ∈ ∂hu and
v ∈ ∂hv. There exists a sequence of hexagon h0 = hv, h1, . . . , hn = hu such that hi and hi+1
are adjacent for all i. If two hexagons h and k are adjacent, there exists a path from any
vertex of ∂h to any vertex of ∂k. On every hexagon hi, 1 ≤ i < n, choose a vertex vi. Let
v0 = v and vn = u. There exist paths Pi with endvertices vi and vi+1. Concatenation of
paths P0, P1, . . . , Pn−1 is a (u, v)-walk.

Statement (b) was already proved in the discussion preceding Proposition 5.13.
If H ⊆ G, then girth(H) ≥ girth(G). The fact that G(K) ⊆ G(H) and Proposition 5.12

give us the inequality. Those cycles which attain the equality are characterized by Proposi-
tion 5.12. Now suppose that h /∈ K and that K is non-degenerate. Hexagon h is sorrounded
by 6 hexagons h1, h2, . . . , h6 of H. By definition of G(K), at least one of h or hi must be
in K for all i. This means that h1, . . . , h6 ∈ K. But then {h} is a corona hole of size 1, a
contradiction.

Proposition 5.14. For any coronoid K, the subgraph ∂K forms a collection of b(K), b(K) ≥
1, cycles. A coronoid is a benzenoid if b(K) = 1 and is a proper coronoid with b(K) − 1
corona holes if b(K) > 1.

Proof. Look at Figure 5.18. There are two types of boundary vertex: the one in Fig-
ure 5.18(a) is incident with only one hexagon of K; the one in Figure 5.18(b) is incident
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with 2 hexagons of K. We consider the subgraph containing boundary vertices and edges.
In the first case vertex v is incident with edges e and e′ and has degree 2. In the second
case, v is incident with e and e′′ and also has degree 2. Therefore, the subgraph containing
boundary vertices and edges is a 2-regular graph which is a union of vertex-disjoint cycles.
By the Theorem 2.3 (Jordan curve theorem), every cycle splits the plane into two discon-

h1 h2

h3

e′′

v

e′

e

(a)

h1 h2

h3

e′

v

e′′

e

(b)

Figure 5.18: Two types of boundary vertices. Shaded hexagons are present in the coronoid.
Vertex v is of degree 2 in the first case and of degree 3 in the second case. Boundary vertices
and edges are emphasized.

nected regions. Consider a hexagon h ∈ K{. It is contained in a region that is surrounded
by one of the cycles. No member of K is inside this region, because a pathway of hexagons
cannot enter the region elsewhere but through the perimeter. Therefore, perimeters sepa-
rate corona holes from the coronoid K. By Theorem 5.7, there must be the same number
of cycles as there are corona holes (including the outer face).

For two graphs G and H by H ↪→ G we denote the embedding (injective homomorphism)
of graph H into G. Note that graph G(K) is not a plane graph and does not possess any
geometric information. Let A be anthracene. From Figure 5.19, it is clear that G(A) can
be drawn in the plane in many different ways.

(a) (b) (c) (d) (e)

Figure 5.19: Some different embeddings of the anthracene graph G(A) in the Euclidean
plane. Only (a) represents a part of the hexagonal grid H.

The most appropriate drawing of anthracene for chemical purposes is the left-most. It is
the only one that can be obtained from the hexagonal grid H. There is an embedding of a
coronoid graph into the hexagonal grid H called the natural embedding. Recall that G(K)
was obtained from K by taking all 0-cells and 1-cells of the corresponding subcomplex. The
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natural embedding just sends the graph back to its place of birth. We have the following
theorem to tell us that there is only one drawing up to symmetries of the hexagonal grid:

Theorem 5.15. Let K be a coronoid and let C ⊆ G(K) be a cycle of length 6 (|C| = 6).
Then C ↪→ G(H) can be extended to G(K) ↪→ G(H) in an unique way.

Proof. Let e = uv ∈ E(C6). Then e ↪→ G(H) can be extended to C6 ↪→ G(H) in two
different ways.

The distance between hexagons h and k in K, d(h, k), is the smallest n for which a
sequence h0 = h, h1, . . . , hn = k of sequentially adjacent hexagons of K exist. Let K =
{h1, h2, . . . , hd}. Suppose that C = ∂h1 and that d(h1, hi) ≤ d(h1, di+1). We start with
C ↪→ G(H) and extend it step by step. On i-th step we find images of those vertices of ∂hi
that are not already embedded. For hi there exists some hj, j < i, such that ∂hj was already
embedded and hi shares an edge ei with hj. If vertices of ∂hi were already embedded, there
is nothing left to do. Otherwise, ei ↪→ G(H) can be extended to ∂hi ↪→ G(H) in two ways.
As we are constructing an injective homomorphism, images of ∂hj and ∂hi may not overlap.
Therefore, only one option remains.

This constructive proof gives rise to an algorithm for embedding an arbitrary coronoid
graph G into the hexagonal lattice. If anything goes wrong during this procedure, that
means that the input graph G was not a valid coronoid graph. If the graph G is a valid
coronoid graph, the algorithm will always finish successfully.

Theorem 5.15 no longer holds, if we permit arbitrary subgraphs of G(H). (See the
examples given in Figure 5.20, Figure 5.21 and Figure 5.22.)

a a a

Figure 5.20: A graph consisting of two hexagons connected by a path of length 3 can be
embedded in the hexagonal lattice in more than one way, even when the hexagon denoted
by a is fixed.

Figure 5.21: Another example of a non-coronoid subgraph of the lattice that can be em-
bedded in more than one way.
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Figure 5.22: An example of a 2-connected non-coronoid graph that can be embedded in
more than one way. (Not all possible embeddings are listed.)

Lemma 5.16. Let K be a coronoid and let G := G(K). Then there exists (up to symmetry
of H) exactly one non-degenerate coronoid N such that G = G(N ). Moreover, N ∼=
NonDeg(K).

Proof. Choose some hexagon h ∈ H and choose an arbitrary 6-cycle C in G. Let φ : C ↪→
G(H) be an embedding such that φ(C) = ∂h. By Theorem 5.15, φ can be extended to
Φ: G ↪→ G(H) in a unique way. Let N = {h ∈ H | ∂h ⊆ Φ(G)}. For every 6-cycle C in
Φ(G) there exists some hC ∈ N such that Φ(C) = ∂hC .

First we show that N is non-degenerate. Suppose that it has a corona hole of size 1,
i.e., there exists h̃ ∈ N { which is sorrounded by h1, h2, . . . , h6 ∈ N . Every edge of cycle ∂h̃
is present in Φ(G) because all hexagons h1, . . . , h6 are present in N . But then, by definition
of N , also h̃ ∈ N . A contradiction.

Now, we show that N ∼= NonDeg(K). Without loss of generality, we can assume that
Φ is the natural embedding. If k ∈ K then from the definition of G(K) we conclude that
∂k ∈ G(K). Therefore, k ∈ N . This means that K ⊆ N .

Let h ∈ N \K. Let h̃ ∈ N(h) and suppose that h̃ /∈ K. We know that h and h̃ share an
edge e which does not belong to G(K), because neither h nor h̃ belongs to K. But e ∈ G(K)
by definition of N . This is a contradiction. Therefore, h̃ ∈ K for every h̃ ∈ N(h). With
other words, h is a degenerate corona hole inside K. That means that N is obtained from
K by adding degenerate corona holes.

We use the terminology of Gutman and Cyvin [102]. Each boundary cycle is called a perime-
ter. In a proper coronoid there is one outer perimeter and one or more inner perimeters. It
may happen that one of the inner perimeters is longer than the outer perimeter (see Figure
5.23). Nevertheless, the cycle of a coronoid graph that belong to the outer perimeter can be

Figure 5.23: The outer perimeter of this single coronoid is of length 48 whilst the inner
perimeter is of length 58.
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easily recognised. By Theorem 5.15, a coronoid can be embedded in the hexagonal lattice
in a unique way (up to symmetry). Then the left-most vertex of the coronoid belongs to
the outer perimeter.

A corona hole is a unique benzenoid that can fill the interior of an inner perimeter. An
inner perimeter of a coronoid may be viewed as the (outer) perimeter of the corresponding
corona hole. The roles of boundary vertices of degrees 2 and 3 are interchanged when we
make this change of viewpoint. A corona hole of a non-degenerate coronoid has at least 2
hexagons and the corresponding inner perimeter has at least two vertices of degree 2. A
typical coronoid is schematically illustrated in Figure 5.24.

c. hole

c. hole

c. hole coronoid

outer perimeter

inner perimeters

vertices of degree 2

Figure 5.24: Schematic illustration of a typical coronoid. The outer perimeter has at least
6 vertices of degree 2 and any inner perimeter has at least 2 vertices of degree 2.

There are exactly two vertices of degree 2 on the inner perimeter in the case of a naphthalene
corona hole. For all other corona holes the number of such vertices is strictly greater than
2. A lower bound can easily be obtained from the equations in [102]. Let us prove a simple
lemma first:

Lemma 5.17. Let h, n, m, ni and ν denote, respectively, the number of hexagons, vertices,
edges, internal vertices and boundary vertices of degree 3 in a benzenoid B. Then:

ν = 2h− 2− ni (5.17)

and
n = 4h+ 2− ni. (5.18)

Proof. Both equations can be proved by the mathematical induction on the number of
hexagons h. Every benzenoid B with h hexagons can be obtained from a benzenoid B′ with
h− 1 hexagons by adding a hexagon a to the perimeter of B′. The hexagon a ∈ B can be
in L1, L3, L5, P2 or P4 mode.

The only benzenoid with a single hexagon is the benzene for which h = 1, n = 6, m = 6,
ni = 0 and ν = 0. Equations (5.17) and (5.18) clearly hold for the benzene.
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Let h′, n′, m′, n′i and ν ′ be the parameters of the benzenoid B′ (from which B is obtained
by a single addition). By the induction hypothesis it holds that

ν ′ = 2h′ − 2− n′i
and

n′ = 4h′ + 2− n′i.
Clearly, h = h′ + 1. Suppose that the hexagon a is in L3 mode. By this addition the
number of vertices increases by 2 and the number of edges increases by 3, i.e., n = n′ + 2
and m = m′ + 3. The number of internal vertices increases by 2, i.e., ni = n′i + 2. The
number of boundary vertices of degree 3 remains the same, i.e., ν ′ = ν. It follows that

ν = ν ′ = 2h′ − 2− n′i = 2(h− 1)− 2− (ni − 2) = 2h− 2− ni
and

n = n′ + 2 = 4h′ + 2− n′i + 2 = 4(h− 1) + 2− (ni − 2) + 2 = 4h+ 2− ni.

The cases when a is in L1, L5, P2 or P4 mode can be proved by the same technique and are
left as an exercise to the reader.
Proposition 5.18. Let h, n, m and ni denote, respectively, the number of hexagons, ver-
tices, edges and internal vertices in a corona hole B of a coronoid C. The number of bound-
ary vertices of degree 3 in B (which correspond to vertices of degree 2 on the corresponding
inner perimeter of C), is

2h− 2− ni = n− 2h− 4 ≥
√

12h− 3− 3. (5.19)

Proof. Let ν denote the number of boundary vertices of degree 3 that belong to the corona
hole B (those vertices are exactly degree-2 vertices of the corresponding inner perimeter).
From equations (5.17) and (5.18) we can eliminate variable ni to obtain ν = n − 2h − 4.
Then apply 2h+ 1 +

√
12h− 3 ≤ n [108] to get ν ≥

√
12h− 3− 3.

5.5 Description via BEC and enumeration
There are several combinatorial descriptions of a benzenoid. A benzenoid can be, for
instance, represented as a set of hexagons of the hexgonal grid, i.e., as a subset of Z × Z.
For example, chrysene in Figure 5.4(i) can be represented by the set

{(−1, 0), (0, 0), (0, 1), (1, 1)} (5.20)

or by the set
{(1, 1), (1, 2), (2, 2), (2, 3)}. (5.21)

There are infinitely many such representations of any given benzenoid. By appying an
isometry of the hexagonal grid we obtain another representation. Assume that a benzenoid
B with h hexagons is represented by the set

{(ξ1, η1), (ξ2, η2), . . . , (ξh, ηh)}. (5.22)

We may assume that these labels are lexicographically ordered, i.e.,
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(a) ξi < ξi+1 or
(b) ξi = ξi+1 and ηi < ηi+1

for all 1 ≤ i < h. If we also require that min1≤i≤h ξi = 0 and min1≤i≤h ηi = 0 then we obtain
a finite list of possible representations. The one that is lexicographically the smallest is
called the canonical representation. The canonical representation of the chrysene is

{(0, 0), (0, 1), (1, 1), (1, 2)}. (5.23)

Another possible description, which is particularly user-friendly, is the so-called boundary-
edges code popularized by Hansen et al. [107]. See also [125]. The reader should be aware
that helicenes are not uniquely determined by their boundary-edges codes.
Definition 5.14. The boundary-edges code of a benzenoid B, denoted BEC (B) is a circular
sequence of numbers, where each of them counts the number of edges on the boundary
between two consecutive degree-3 boundary vertices. The exception is benzene with the
boundary-edges code 6.

Benzene is an exception because it has no degree-3 vertices on its boundary. Any
other benzenoid can be described by a sequence of numbers chosen from the alphabet
{1, 2, 3, 4, 5}.
Example 5.3. Figure 5.25(a) depicts a catacondensed benzenoid B1 of 7 hexagons with

BEC (B1) = 532151153121. (5.24)

A pericondensed benzenoid B2 of 5 hexagons with

BEC (B2) = 5314421 (5.25)

is in Figure 5.25(b). �
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2

3 1

5

1

1

1
1

5 3

5

(a) B1

5

3

1
1

2
4

4
(b) B2

Figure 5.25: Examples of benzenoids together with corresponding numbers in boundary-
edges codes.

We may shift and reverse a boundary-edges code. For example, from the code 5314421
we obtain 3144215, 1442153, 1244135, . . . The string that is lexicographically the largest
among all cyclic shifts and their reverses is called the canonical boundary-edges code. The
codes (5.24) and (5.25) are both canonical. This also gives us an easy method to test
whether two benzenoids are equivalent. The following proposition is clear:
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Proposition 5.19. Let B1 and B2 be two benzenoids and let BEC (B1) and BEC (B2) be
their canonical boundary-edges codes. If B1 ∼= B2 then BEC (B1) = BEC (B2). �

The problem of enumeration of benzenoids was widely studied in the past. An overview
of algorithms for generating benzenoids is given in [150] and in references cited therein.
See also papers [22, 23] by Brinkmann, Caporossi and Hansen. An efficient generator for
benzenoids is implemented in the CaGe package [24]. Here, we will describe a simple
algorithm that exploits the canonical boundary-edges code. This algorithm was used in
Section 4.2.

We create a sequence of sets D1,D2,D3, . . . The set Dh will contain canonical boundary-
edges codes of all benzenoids with h hexagons. We start with D1 = {6}, i.e., the set D1
contains benzene which is the only benzenoid with a single hexagon. We can obtain Dh+1
from the set Dh. Iterate over all members of Dh. For each B ∈ Dh, we attach a new
hexagon to B in all possible ways. This produces a finite list of coronoids C1, C2, . . . , Cm.
We can immediately discard all proper coronoids. The remaining hexagonal systems are all
benzenoid. We determine their canonical boundary-edges codes and add them to the set
Dh+1.

From D1 we obtain D2 = {55}. We can attach a new hexagon to benzene at 6 different
places, but in each case we obtain the naphthalene whose boundary-edges code is 55. From
D2 we obtain D3 = {5252, 5351, 444} and so on.

The time that is needed to obtain Dh+1 from Dh depends on the size of the set Dh
and on lengths of the boundary-edges codes stored in Dh. Let `1, `2, . . . , `|Dh| be lengths of
boundary-edges codes in Dh. For the benzenoid that corresponds to the code `i there are
O(`i) places at which a new hexagon may be attached and the new boundary-edges code
has length O(`i). The canonical boundary-edges code can be determined in linear time
with respect to the length of the code [20]. If the set data structure is implemented as a
has table, the insertion costs on average O(1) time and the hashing function takes O(`i)
time. Therefore, it takes O(∑|Dh|i=1 `

2
i ) time to create Dh+1 from Dh.

5.6 Convex benzenoids
Recently Cruz, Gutman and Rada [47] considered an interesting subfamily of (finite) ben-
zenoids that they call convex. Independently, a webpage by Scott Reynolds (a.k.a. Nekura
Ca) exists that enumerates convex benzenoids [178]. The sequence was considered, yet
again independently, by Allan C. Wechsler and is recorded in the OEIS [1] as the sequence
A116513 [198].

By a walk in H we mean a sequence of hexagons such that any two consecutive ones
are either adjacent or the same. Recall that a path is a walk that consists of pairwise
distinct hexagons. For any pair of hexagons a and b in the infinite hexagonal grid H define
the interval IH(a, b) to be the benzenoid (which turns out to be of rhombic shape) that is
composed of all hexagons on any of the shortest paths in H from a to b.

Definition 5.15. A benzenoid B is convex if for any pair of its hexagons a and b the whole
interval IH(a, b) is contained in B.
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This definition follows readily from the fact that hexagons of H form a metric space and
B can be viewed as a subspace of H. We are therefore considering convex sets in metric
spaces. This notion of convexity (also known as geodesic convexity) can be found in a survey
on metric graph theory by Bandelt and Chepoi [10].

Let a, b ∈ B. With dB(a, b) we denote the distance between a and b inside B and dH(a, b)
is the distance between a and b with respect to H. Note that

dB(a, b) ≥ dH(a, b), (5.26)

but they are not necessarily equal (see Figure 5.26). If, in addition, K ⊆ H, then

a b

Figure 5.26: Benzo[c]phenanthrene B, dB(a, b) = 3 6= dH(a, b) = 2.

dH(a,K) = min
k∈K

dH(a, k). (5.27)

Definition 5.16. A benzenoid B obeys the Small Parallelogram Rule if for every a, b ∈ B
such that dH(a, b) = 2 inclusion of some shortest path between a and b implies inclusion of
the whole interval IH(a, b), i.e.,

∀a, b ∈ B : (dH(a, b) = 2 ∧ dB(a, b) = 2 =⇒ IH(a, b) ⊆ B).

We call it the Small Parallelogram Rule for the following reason. If a sub-benzenoid consist-
ing of 3 hexagons and defined by the boundary-edges code 5351 (phenanthrene) is present
then the fourth hexagon that extends it to to pyrene (with the boundary-edges code 4343)
is also present (see Figure 5.27). The case when a and b lie on the same line is trivial (there
is only one shortest path between a and b).

a

b

(a) dB(a, b) = dH(a, b) = 2

a

c b

(b) c ∈ IH(a, b) ⊆ B

Figure 5.27: Small Parallelogram Rule

Often it is convenient to introduce a coordinate system on H. First, observe that the set
of all edges of H can be partitioned into 3 classes with respect to their direction:
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(a) v-edges (vertical edges),

(b) p-edges (positive slope edges), and

(c) n-edges (negative slope edges).

Every hexagon of H has two v-neighbours, two p-neighbours, and two n-neighbours. Recall
that each a ∈ H can be assigned two integer coordinates. Consider the hexagon labeled by
(0, 0). Its right v-neighbour has its first coordinate increased by 1, and its left v-neighbour
has its first coordinate decreased by 1. Its upper-right n-neighbour has its second coordinate
increased by 1, and the opposite n-neighbour has its second coordinate decreased by 1.
Figure 5.28 displays a subregion of H equipped with this coordinate system.

(−3, 2) (−2, 2) (−1, 2) (0, 2) (1, 2)

(−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1)

(−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0)

(−1,−1) (0,−1) (1,−1) (2,−1) (3,−1)

(−1,−2) (0,−2) (1,−2) (2,−2) (3,−2)

η = 2

η = 1

η = 0

η = −1

η = −2

ξ
=

3

ξ
=

2

ξ
=

1

ξ
=

0

ξ
=
−1

ζ =
3

ζ =
2

ζ =
1

ζ =
0

ζ =
−1

Figure 5.28: Coordinate system on H.

Let a ∈ H be a hexagon of the infinite hexagonal grid H. Let ξ(a) and η(a) denote
the first and second coordinate of a. We can associate to the hexagon a another number
ζ(a) = ξ(a) + η(a). It can be treated as yet another coordinate which increases/decreases
with respect to the p-direction but is not independent of the other two.

Definition 5.17. The sets

{a ∈ H | ξ(a) = k}, {a ∈ H | η(a) = k}, and {a ∈ H | ζ(a) = k}, (5.28)

where k ∈ Z are called lines in H. We will distinguish them by their directions and call
them positive slope line, horizontal line and negative slope line, respectively.

According to Definition 5.17, hexagons a, b ∈ H belong to the same line if either:
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(a) ξ(a) = ξ(b),

(b) η(a) = η(b), or

(c) ζ(a) = ζ(b).

Examples of lines are shown on Figure 5.28. Green hexagons and the gray one constitute
a horizontal line, red hexagons and the gray one constitute a positive slope line, and blue
hexagons and the gray one constitute a negative slope line. Note that any two lines with
different directions intersect in exactly one hexagon and, moreover, there alway exists ex-
actly one line with the remaining direction that includes the intersection of the previous
two.

Proposition 5.20. A benzenoid system B is convex if and only if:

(a) B is connected and

(b) B obeys the Small Paralellogram Rule.

Proposition 5.20 gives us much more concise conditions for convexity than the original
Definition 5.15. To determine if a benzenoid is convex, one only needs to check whether
it is connected and whether it obeys the Small Parallelogram Rule, which is a “local”
condition. To prove the Proposition 5.20 we need the following lemma:

Lemma 5.21. Let a benzenoid B satisfy conditions (a) and (b) from Proposition 5.20. If
a, b ∈ H are on the same line then I(a, b) ⊆ B.

Proof. Let a, b ∈ H be on the same line. Without loss of generality we can assume that
a, b ∈ L = {h ∈ H | ξ(h) = 0}. Since B is connected, there exists a path P = p1 p2 . . . pl
between a = p1 and b = pl. (By the definition of a path, pi and pi+1 are adjacent hexagons
for all 1 ≤ i < l.) Let n = max1≤i≤l dH(pi,L). The proof goes by induction on n.

In the case of n = 0 (base of induction) the image of path P is a subset of L. Since the
image of a path is connected it follow that I(a, b) ⊆ B.

Now suppose that n = max1≤i≤l dH(pi,L) > 0. By the induction hypothesis the exis-
tence of a pathQ = q1 q2 . . . qk between a and b, such that max1≤i≤k dH(qi,L) < n, would im-
ply that I(a, b) ⊆ B. Let r be the smallest index such that dH(pr−1,L) = n−1∧dH(pr,L) =
n and let s be the smallest index such that dH(ps,L) = n ∧ dH(ps+1,L) = n − 1 ∧ s ≥ r.
This situation is depicted on Figure 5.29. This subpath may look like p′r−1 pr . . . ps p

′
s+1,

pr pr+1 . . . ps−1 ps

p′r−1 p′′r−1 p′s+1 p′′s+1

Figure 5.29: Subpath pr−1 pr . . . ps+1 of path P .

p′′r−1 pr . . . ps p
′
s+1, p′r−1 pr . . . ps p

′′
s+1, or p′′r−1 pr . . . ps p

′′
s+1. If r = s then by deletion of pr
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from the path P we obtain a walk (which can be further reduced to a proper path) that
has one less hexagon at distance n from L than the original path P . If r < s then we have
two options:

(a) if pr−1 = p′′r−1 we can erase pr from P since pr−1 and pr+1 are adjacent;

(b) if pr−1 = p′r−1 then the Small Parallelogram Rule implies that p′′r−1 ∈ B so we can
replace pr with p′′r−1 in path P .

In both cases we obtain a path with one less hexagon at distance n from L. If we iteratively
apply this procedure, we obtain the path Q with desired property.

Proof of Proposition 5.20. If B is convex then it is clear that B is connected and that B
obeys the Small Parallelogram Rule.

Let us prove the other direction. Choose arbitrary hexagons a, b ∈ B. We have to show
that IH(a, b) ⊆ B. Interval between two hexagons is always of rhombic shape. Without
loss of generality (thanks to the symmetries of H) we can assume that a is in its lower-
left corner and b is in its upper-right corner (as depicted on Figure 5.30). Condition (a)
implies the existence of a path P in B between a and b. An example of such a path is on
Figure 5.30. First, we show that we can assume that the path P = p1 p2 . . . pl lies entirely in

p8 p9 p14

p7 p10 p13

p1 p6 p5 p11 p12

p2 p3 p4

Figure 5.30: Interval I(a = p1, b = p14)

the half-plane {h ∈ H | η(h) ≥ η(a)}. Let r be the smallest index such that η(pr) < η(a).
Note that r = 2 in the example from Figure 5.30. Let s be the largest index such that
η(ps) < η(a). Note that s = 4 in the example from Figure 5.30. If such indices do not
exist, there is nothing left to prove. If such indices exist, then 1 < r ≤ s < l. Moreover,
η(pr−1) = η(a) = η(ps+1). So pr−1 and ps+1 are on the same line and I(pr−1, ps+1) ⊆ B by
Lemma 5.21. So the subpath pr . . . ps can be replaced with the shortest (pr−1, ps+1)-path.
Similarly, we can assume that P lies entirely in the half-plane {h ∈ H | η(h) ≤ η(b)}, in
half-plane {h ∈ H | ξ(h) ≥ ξ(a)}, and in half-plane {h ∈ H | ξ(h) ≤ ξ(b)}. Therefore
P ⊆ IH(a, b).

So far, we know that there is a path P in B connecting a to b that lies entirely in
IH(a, b). Recall our assumption that a is in its lower-left corner and b is in its upper-right
corner. Now, we will show that there also exists a path P ′ = p′1p

′
2 . . . p

′
m in B with the

special property that p′i+1 is the right v-neighbour or the upper-right n-neighbour of p′i for
each i, i.e., in each step either the η coordinate increases or the ξ coordinate increases.
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The path P ′ can be obtained from the path P with the help of Lemma 5.21. Find
the smallest index i, such that either ξ(pi+1) < ξ(pi) or η(pi+1) < η(pi). Without loss of
generality we can assume that ξ(pi+1) < ξ(pi). In each step of the path the ξ coordinate
either increases by 1, decreases by 1 or stays the same. The path has to reach the upper-right
corner eventually, so there exists an index j > i, such that ξ(pj) = ξ(pi). By Lemma 5.21,
the subpath pi+1, . . . , pj−1 can be replaced with a straight line segment from pi to pj that
lies in B. We can iteratively use the above operation until we finally obtain the path P ′

with the desired property.
The path P ′ that we obtained can be described as a sequence of symbols→ and↗ which

indicate the increase in the ξ and in the η coordinate, respectively. One of such paths in the
example from Figure 5.30 is (→,↗,→,→,↗). Note that every possible shortest path in
IH(a, b) can be described as a permutation of these symbols. The Small Parallelogram Rule
implies that we may swap two consecutive symbols in the sequence and thus obtain another
path which also lies in B. From (→,↗,→,→,↗) we can obtain, say, (→,→,↗,→,↗).
It is clear that any permutation can be obtained in this way which implies that the whole
interval IH(a, b) is contained in B.

Proposition 5.22. A benzenoid B is convex if and only if its boundary-edges code BEC (B)
does not contain symbol 1.

Example 5.4. The distinction between convex and non-convex benzenoids is visible from
their boundary-edges codes. For instance, the boundary-edges code of the benzenoid B1 on
Figure 5.31(a) is 24334 and does not contain symbol 1. Therefore this benzenoid is convex,

4
2

4

33

(a) BEC (B1) = 24334, convex

4 4

4 4

1 1

(b) BEC (B2) = 144144, non-convex

Figure 5.31: The distinction between convex and non-convex benzenoids is visible from
their boundary-edges codes.

whilst, the boundary-edges code for the benzenoid in Figure 5.31(b) is 144144, containing
a 1. Hence the benzenoid itself is non-convex. See Figure 5.31. �

Proof. Let B be a convex benzenoid. We will prove that there is no 1 in its boundary-edges
code. Suppose that there is one. Then that part of the boundary of B that corresponds
to the symbol 1 in its boundary-edges code locally looks as shown in Figure 5.32. There
exist three hexagons a, b and c which are positioned as indicated in the Figure 5.32. This
means that the Small Parallelogram Rule is not obeyed, which contradicts the fact that B
is convex. Thus, there can be no 1 in its boundary-edges code.

Let B be a benzenoid such that there is no symbol 1 in the boundary-edges code of B.
Assume that B is not convex. By Proposition 5.20, it does not obey the Small Parallelogram
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Figure 5.32: The part of boundary corresponding to symbol 1 in the boundary-edges code.

Rule. There must exist three hexagons in B which are positioned in the phenanthrene
shape as shown in Figure 5.27(b) and where the hexagon labeled with c is not present (see
Figure 5.27(b)). Then the corresponding part of the boundary contains two consecutive
degree-3 vertices, i.e., there is a 1 in its boundary-edges code. This is a contradiction, thus
benzenoid B is convex.

We also propose the following definition:

Definition 5.18. A benzenoid B is pseudo-convex if there are no two consecutive 1s in its
boundary-edges code.

In addition to finite benzenoids we will need (for the purpose of theoretical reasoning)
some infinite ones:

Definition 5.19. An infinite connected hexagonal system K whose complement K{ consists
of infinite connected components is called an infinite benzenoid.

Theorem 5.23. There are uncountably many mutually non-equivalent infinite benzenoids.

Proof. The interval [0, 1) has the cardinality of the continuum. Each number x ∈ [0, 1) can
be written in its binary representation

0.x1x2x3x4 . . . (5.29)

Note that xi ∈ {0, 1} for each i ∈ N and that

x =
∞∑
i=1

xi · 2−i. (5.30)

The sequence {xi}∞i=1 is uniquely determined if we require that for each n ∈ N there exists
an integer m > n such that xm 6= 1. For example, the number 11

16 can be written in binary
representation as 0.1011.

We will assign an infinite benzenoid to every such sequence {xi}∞i=1. Define

Px = {h ∈ H | η(h) ≤ 0} \ ({(−2, 0), (−1, 0)} ∪ {(2i− 1, 0) | i ∈ N ∧ xi = 1}) .

The infinite benzenoid Px is obtained from the half-plane P = {h ∈ H | η(h) ≤ 0} by
removing hexagons (−2, 0), (−1, 0) and all hexagon (2i− 1, 0) where i ∈ N and xi = 1. For
example, the infinite benzenoid that corresponds to number 11

16 is shown in Figure 5.33.
It is not hard to see that Px � Py if x 6= y. We constructed an injective mapping

from the set [0, 1) to the class of infinite benzenoids. Therefore, the class of all infinite
benzenoids is uncountable.
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Figure 5.33: Infinite benzenoid P 11
16
.

Theorem 5.27 means that one cannot describe all of the infinite benzenoids algorithmically.
This means that there exist infinite benzenoids for which there does not exist a finite
program for constructing them (even if the program runs infinitely long).

Let us consider infinite convex benzenoids. The whole hexagonal grid H and the empty
set ∅ are clearly convex. A hexagonal half-plane is also convex. Each half-plane has a

(a) HP−η (n) (b) HP−ζ (n) (c) HP−ξ (n) (d) HP+
η (n) (e) HP+

ζ (n) (f) HP+
ξ (n)

Figure 5.34: The normal of a hexagonal half-plane can point in 6 different directions.

normal which is pointing out of the half-plane. There are exactly 6 possible directions of
half-planes (see Figure 5.34). We will denote them as follows:

HP+
ξ (n) = {h ∈ H | ξ(h) ≥ n}, (5.31)

HP−ξ (n) = {h ∈ H | ξ(h) ≤ n}, (5.32)
HP+

η (n) = {h ∈ H | η(h) ≥ n}, (5.33)
HP−η (n) = {h ∈ H | η(h) ≤ n}, (5.34)
HP+

ζ (n) = {h ∈ H | ζ(h) ≥ n}, (5.35)
HP−ζ (n) = {h ∈ H | ζ(h) ≤ n}. (5.36)

Note that the intersection of two half-planes with the same normal is equal to one of
the two. For example, HP+

ξ (3) ∩ HP+
ξ (5) = HP+

ξ (5). Therefore, the interection of any
number of half-planes is equal to an intersection of at most 6 of those half-planes. For each
direction of the normal that is present in the list, we select the half-plane that is contained
in all other half-planes that have the same direction.

Definition 5.20. Let B be a benzenoid (finite or infinite). The smallest convex benzenoid
containing B is called the convex closure of B and is denoted Conv(B).

Proposition 5.24. Any intersection of convex (finite or infinite) benzenoids is a convex
benzenoid.



5.6. CONVEX BENZENOIDS 145

Note that the empty set ∅ can also be considered as a convex benzenoid. To a chemist,
this means nothing concrete. To a mathematician, it is clear that every two members of an
empty set satisfy the condition in Definition 5.15, i.e., this condition is void.

Proof. Let B1 and B2 be two convex benzenoids. If their intersection is ∅ then there is
nothing to prove. Suppose that B1 ∩ B2 6= ∅. Let a, b ∈ B1 ∩ B2. Because B1 is convex, we
have that IH(a, b) ⊆ B1. Similarly, because B2 is convex we have that IH(a, b) ⊆ B2. But
this means that IH(a, b) ⊆ B1 ∩ B2, which completes the proof.
Proposition 5.25. A benzenoid B is convex if and only if it can be obtained as an inter-
section of half-planes, i.e., if there exist integers n+

ξ , n−ξ , n+
η , n−η , n+

ζ and n−ζ , such that

B = HP+
ξ (n+

ξ ) ∩HP−ξ (n−ξ ) ∩HP+
η (n+

η ) ∩HP−η (n−η ) ∩HP+
ζ (n+

ζ ) ∩HP−ζ (n−ζ ). (5.37)

Proof. If a benzenoid B is obtained as an intersection of half-planes then it is convex by
Proposition 5.24.

Now let B be a convex benzenoid. We will show that it is equal to the intersection of 6
half-planes. Let h+

η and h−η be hexagons of B (see Figure 5.35) such that

Figure 5.35: A convex benzenoid B from the proof of Proposition 5.25.

η(h+
η ) = max

h∈B
η(h) and (5.38)

η(h−η ) = min
h∈B

η(h). (5.39)

Similarly, let h+
ξ , h−ξ , h+

ζ and h−ζ be hexagons of B such that

ξ(h+
ξ ) = max

h∈B
ξ(h), (5.40)

ξ(h−ξ ) = min
h∈B

ξ(h), (5.41)

η(h+
ζ ) = max

h∈B
ζ(h) and (5.42)

η(h−ζ ) = min
h∈B

ζ(h). (5.43)

Let h1, h2, . . . , h6 be hexagons of H such that:
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(i) η(h1) = η(h+
η ), ξ(h1) = ξ(h−ξ );

(ii) η(h2) = η(h+
η ), ζ(h2) = ζ(h+

ζ );

(iii) ζ(h3) = ζ(h+
ζ ), ξ(h3) = ξ(h+

ξ );

(iv) η(h4) = η(h−η ), ξ(h4) = ξ(h+
ξ );

(v) η(h5) = η(h−η ), ζ(h5) = ζ(h−ζ );

(vi) ζ(h6) = ζ(h−ζ ), ξ(h6) = ξ(h−ξ ).

As h1 ∈ IH(h+
η , h

−
ξ ) it follows that h1 ∈ B. By analogy, h2, . . . , h6 ∈ B. Note that hi and

hi+1 (indices taken modulo 6) are on the same line, thus the line segment between hi and
hi+1 is also contained in B. All hexagons inside the ‘polygon’ defined by h1, . . . , h6 must
belong to B or there would be a corona hole in B. If any hexagon outside that polygon
belonged to B that would contradict one of equations (5.38), (5.39), (5.40), (5.41), (5.42)
or (5.43). It follows that

B = HP+
ξ (n−ξ ) ∩HP−ξ (n+

ξ ) ∩HP+
η (n−η ) ∩HP−η (n+

η ) ∩HP+
ζ (n−ζ ) ∩HP−ζ (n+

ζ ). (5.44)

Proposition 5.26. An infinite benzenoid B is convex if and only if it can be obtained as
an intersection of half-planes. �

The proof of Proposition 5.26 is similar to the proof of Proposition 5.25 and is therefore
omitted. The only difference is that some of the half-planes are not present. Therefore, for
infinite convex benzenoids we have the following theorem:

Theorem 5.27. There exist only countably many non-equivalent convex infinite benzenoids.

Proof. By using Proposition 5.26 we can classify the infinite convex hexagons (up to sym-
metries of the hexagonal grid) into several sporadic cases and countable families (see Fig-
ure 5.36). The half-plane, the anvil and the wedge are sporadic cases. The strip is a family
parametrized with an integer n ≥ 1. The chomped wedge is parametrized with an integer
n ≥ 2. The knife is parametrized with an integer n ≥ 2. The sword is parametrized with
two integers n and m such that m ≥ n ≥ 2.

In a smiliar manner, by using Proposition 5.25, the finite convex benzenoids can be
classified into six mutually disjoint families that we call fundamental families of convex
benzenoids:

(a) The linear chain L(n), n ≥ 2, having n hexagons. The corresponding boundary-edges
code is

52n−252n−2.

(b) The equilateral triangle T3(n), n ≥ 2, having n hexagons on each of its sides. The
corresponding boundary-edges code is

42n−242n−242n−2.
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(a) half-plane (b) anvil (c) wedge (d) strip

(e) chomped wedge (f) knife (g) sword

Figure 5.36: The classification of infinite convex benzenoids.

(c) The equilateral trapezoid T4(n,m), n > m ≥ 2, having n hexagons on the bottom
base and m hexagons on the top base. The corresponding boundary-edges code is

42n−242n−m−132m−232n−m−1.

(d) The rhomboid R(n,m), m ≥ n ≥ 2, having n hexagons on its base and m hexagons
on its side. The corresponding boundary-edges code is

42n−232m−242n−232m−2.

(e) The pentagonal benzenoid P (n,m, k), n ≥ 2, k ≥ m ≥ 2 having n hexagons on the
base, m hexagons on its left side and k hexagons on its right side. The corresponding
boundary-edges code is

32n−232k−132m+n−342n+k−332m−2.

(f) The hexagonal benzenoid H(n,m, k, t), n ≥ 2, k ≥ m ≥ 2, n+m− 2 ≥ t ≥ 2, having
n hexagons on the base, m hexagons on its left side, k hexagons on its right side and
t hexagons on its top side. The corresponding boundary-edges code is

32n−232m−232n+k−t−232t−232n+m−t−232k−2.

Note that an exponent n in the boundary-edges code means that the corresponding symbol
repeats n times, e.g. 25 = 22222. This is a compact way of writing the code. Benzene is
also a convex benzenoid and is not included in any of the above families. We treat it as a
separate sporadic case.
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(a) L(2) (b) L(3) (c) T3(2) (d) T3(3) (e) T4(3, 2) (f) T4(4, 3) (g) T4(4, 2)

(h) R(2, 2) (i) R(2, 3) (j) P (2, 2, 2) (k) P (3, 2, 2) (l) P (2, 2, 3) (m) H(2, 2, 2, 2)

(n) H(3, 2, 2, 3) (o) H(3, 2, 3, 3)

Figure 5.37: The smallest members of families of convex benzenoids.

In all of the above families, except forH(n,m, k, t), the benzenoid is uniquely determined
by the described parameters. Note that

H(n,m, k, t) ∼= H(n+m− t,min{k, t},max{k, t},m)
∼= H(n+ k − t,min{m, t},max{m, t}, k)
∼= H(t, n+m− t, n+ k − t, n) (5.45)
∼= H(m,min{n, n+ k − t},max{n, n+ k − t}, n+m− t)
∼= H(k,min{n, n+m− t},max{n, n+m− t}, n+ k − t).

The above parametrisations are all valid and represent equivalent benzenoids. The set
of parameters that is lexicographically the smallest of the above is called the canonical
parametrisation. We obtain the following proposition:

Proposition 5.28. A (finite) benzenoid B is convex if and only if it is equivalent to a
member of one of the families: L(n), T3(n), T4(n), R(n,m), P (n,m, k) or H(n,m, k, t). �

From Proposition 5.28 we can obtain a simple algorithm that can count (and enumerate)
all convex benzenoids with h ≤ N hexagons for a given N . We create an array T of length
N . In T [h] we will keep the number of convex benzenoids with h hexagons. We iterate over
all families and over all admissible parameters for which the number of hexagons remains
below N . (It is easy to derive an expression for the number of hexagons in terms of the
parameters for each of the families of convex benzenoids.) For each benzenoid we determine
the number of hexagons, h, that it contains and increment the value of T [h] by one. Some
care should be taken with the hexagonal family, since we have to check whether the given
parameters are indeed canonical.
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By using the above procedure, we were able to extend the sequence A116513 [198] into
the millions. The numbers of convex benzenoids with h hexagons for h ≤ 50 are given in
the Table 5.1. Benzene is excluded from this table.

h L T3 R T4 P H Σ
1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 1
3 1 1 0 0 0 0 2
4 1 0 1 0 0 0 2
5 1 0 0 1 0 0 2
6 1 1 1 0 0 0 3
7 1 0 0 1 0 1 3
8 1 0 1 0 1 0 3
9 1 0 1 2 0 0 4
10 1 1 1 0 0 1 4
11 1 0 0 1 1 0 3
12 1 0 2 1 0 1 5
13 1 0 0 1 1 1 4
14 1 0 1 1 1 1 5
15 1 1 1 2 1 0 6
16 1 0 2 0 0 2 5
17 1 0 0 1 2 0 4
18 1 0 2 2 0 2 7
19 1 0 0 1 2 2 6
20 1 0 2 1 1 1 6
21 1 1 1 2 1 1 7
22 1 0 1 1 1 2 6
23 1 0 0 1 2 2 6
24 1 0 3 1 2 2 9
25 1 0 1 2 1 2 7

h L T3 R T4 P H Σ
26 1 0 1 1 2 2 7
27 1 0 1 3 2 1 8
28 1 1 2 0 0 4 8
29 1 0 0 1 4 2 8
30 1 0 3 3 1 2 10
31 1 0 0 1 1 3 6
32 1 0 2 0 3 2 8
33 1 0 1 3 2 4 11
34 1 0 1 1 3 4 10
35 1 0 1 3 3 1 9
36 1 1 4 1 1 4 12
37 1 0 0 1 2 3 7
38 1 0 1 1 2 5 10
39 1 0 1 3 5 2 12
40 1 0 3 1 0 5 10
41 1 0 0 1 4 2 8
42 1 0 3 3 2 4 13
43 1 0 0 1 3 6 11
44 1 0 2 1 4 4 12
45 1 1 2 4 2 3 13
46 1 0 1 1 2 5 10
47 1 0 0 1 4 4 10
48 1 0 4 1 3 6 15
49 1 0 1 2 4 4 12
50 1 0 2 2 3 5 13

Table 5.1: The enumeration of convex benzenoids.

5.7 Kekulé structures of hexagonal systems
In this section, we deal with counting and enumeration of Kekulé structures in benzenoids.
We start with characterisation of Kekulé structures by perfect path systems. This is an
important theoretical result and is widely used by theoretical chemists. For some families
of benzenoids, e.g. convex benzenoids, we give formulae in closed form. Then we present an
algorithm by H. Sachs [181] which can determine in linear time whether a benzenoid admits
a perfect matching or not. Much research in this area was done in the past owing to the
importance of benzenoids and Kekulé structures in theoretical chemistry. The monograph
[53] by Cyvin and Gutman is dedicated exclusively to this subject.
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5.7.1 Perfect path systems and perfect matchings
Here, we present an important theoretical result that characterises Kekulé structures in
benzenoids (and also coronoids) by perfect path systems [181].

Definition 5.21. Let B be a coronoid embedded in the infinite hexagonal grid H. A vertex
of B is called a peak if all of its neighbours have strictly smaller y-coordinates. A vertex of
B is called a valley if all of its neighbours have strictly larger y-coordinates.

The coronoid C in Figure 5.38 has 4 peaks labeled p1, . . . , p4 and 4 valleys labeled v1, . . . , v4.
Note that every coronoid has at least one peak and at least one valley. Let C be a coronoid.

Figure 5.38: A coronoid C with 4 peaks and 4 valleys.

With p(C) we denote the number of peaks and v(C) is the number of valleys of p(C).

Definition 5.22. A peak-to-valley path (also called monotonic path) of a coronoid (with
a fixed embedding) is a path connecting a peak to a valley such that y-coordinates of the
vertices decrease at each step while traversing the path from a peak to a valley.

Definition 5.23. A perfect path system (PPS) is a collection of disjoint peak-to-valley
paths, connecting all peaks and all valleys.

Example 5.5. An example of a benzenoid with two peak-to-valley paths is shown on
Figure 5.39. Because all peaks and all valleys are connected and the two paths are disjoint,

Figure 5.39: A perfect path system and the corresponding perfect matching in a benzenoid.

they form a perfect path systems. If we take all non-vertical edges that lie on peak-to-
valley path and all vertical edges that do not lie on peak-to-valley paths we obtain a
perfect matching. The corresponding perfect matching is shown on the right.
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Theorem 5.29. In every coronoid C (with fixed embedding) there is a 1-to-1 correspondence
between the set of perfect matchings and the set of perfect path systems of C.

Proof. Let C be a coronoid and F one of its perfect matchings. Pick a valley b0. Exactly
one of its incident edges, say e0, is in F . Move along edge e0 to its other end vertex w0.
(Recall that benzenoids are bipartite graphs and their vertices can be coloured, say, black
and white. The vertices that correspond to valleys are coloured black.) Vertex w0 is white
and there are two possibilities:

(i) It is a peak, in which case we just found a peak-to-valley path.

(ii) It is not a peak, which means that there is a black vertex b1 that is connected to w0
with a vertical edge f0. Edge f0 is incident to e0, thus f0 /∈ F . Because of that, b1
has a neighbour w1, w1 6= w0, such that b1w1 ∈ F .

We continue with this procedure until we eventually reach a peak wk. This will happen,
because the y-coordinates of the vertices b0, w0, b1, w1, . . . increase all the time and there
are finitely many of them. The path b0w0 b1w1 . . . bk wk is a peak-to-valley path.

It is also possible to reverse this process, i.e., start at a peak (when the coronoid is
turned upside-down, peaks become valleys and valleys become peaks) and find a path to a
valley. Any vertex which is an end vertex of some non-vertical edge in F lies on a peak-to-
valley path. This path can be uniquely determined by using the above procedure (in both
directions). Because every such vertex belongs to precisely one peak and one valley, those
paths are necessarily disjoint. This also means that a PPS is uniquely determined by the
perfect matching F . Note that end vertices of vertical edges from F do not participate in
the PPS. Let Φ(F ) denote the PSS obtained from F .

To show that mapping Φ is injective, consider two different perfect matchings F and
F ′. There exists at least one vertex v in C with the property that u 6= u′ where vu ∈ F and
vu′ ∈ F ′. If edges vu and vu′ are both non-vertical, then the peak-to-valley path that passes
through v in Φ(F ) is necessarily different from the peak-to-valley path that passes through
v in Φ(F ′). If they are not both non-vertical then we may, without loss of generality, assume
that uv is a vertical edge. In that case v does not belong to any peak-to-valley path of
Φ(F ) and it does belong to some peak-to-valley path of Φ(F ′). Therefore, Φ(F ) 6= Φ(F ′).

To show that the mapping Φ is surjective, we have to show that every PPS can be
obtained from a perfect matching. Pick any PPS. The vertices of C can be partitioned into
two classes: those that belong to some peak-to-valley path and those that do not. Vertices
that do not belong to any peak-to-valley path occur in adjacent pairs. Every such pair of
vertices is connected by a vertical edge. If we take all non-vertical edges on all peak-to-
valley paths and all vertical edges that are not incident with any vertex of the perfect path
system then we obtain a perfect matching.

From Theorem 5.29 we immediately obtain:

Corollary 5.30. A coronoid C is Kekulean if and only if it admits a perfect path system.
�
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5.7.2 Kekulé structures in fibonacenes and convex benzenoids
In the Section 5.6 we introduced the six fundamental families of convex benzenoids. The
simplest case is the linear chain L(h):

Proposition 5.31. The linear chain L(h) with h ≥ 1 hexagons admits h+ 1 Kekulé struc-
tures.

Here, we allow parameter h = 1 to also include the benzene. The proof is an easy exercise
in mathematical induction:

Proof. Kekulé structures of benzene, L(1), and naphthalene, L(2), can be manually enu-
merated. They are shown in Figure 5.40. It is clear that L(1) = 2 and L(2) = 3.

(a) (b)

Figure 5.40: Kekulé structures of benzene (a) and naphthalene (b).

Now consider the linear chain L(h) with h ≥ 3. By the induction hypothesis,K(L(h′)) =
h′+ 1 for h′ < h. The chain L(h) has 2 hexagons in the L1 mode and h− 2 hexagons in the
L2 mode (see Figure 5.41(a)). Let e be the edge that is marked on the figure. It is clear
that K(L(h)) = Ke+K∗e , where Ke denotes the number of Kekulé structures that include e
and K∗e denotes the number of Kekulé structures without the edge e. It is easy to see that

(a) (b)

(c)

Figure 5.41: Kekulé structures of the linear chain L(h) composed of h hexagons.

the Kekulé structure is uniquely determined if the edge e is present (see Figure 5.41(b)),
thus Ke = 1. If the edge e is not present, then only a part of the structure is determined
(see Figure 5.41(c)). The red edges are present in every such Kekulé structure and green
edges are not, thus K∗e = K(L(h− 1)) = h. Therefore, K(L(h)) = 1 + h.

Our next example is more interesting. Let us first define a family of benzenoids called
fibonacenes:

Definition 5.24. A fibonacene is an unbranched catacondensed benzenoid in which every
hexagon which is adjacent to two other hexagons is in A2 mode.



5.7. KEKULÉ STRUCTURES OF HEXAGONAL SYSTEMS 153

Figure 5.42: An example of a fibonacene.

Note that if h ≥ 2, there are exactly 2 hexagons in L1 mode in a fibonacene. Benzene is
also a fibonacene. An example is shown in Figure 5.42.

The Fibonacci sequence [64] is probably the most well-known sequence amongst both
professional and “recreational” mathematicians. It is defined by the recurrence relation

Fn = Fn−1 + Fn−2 (5.46)

with the starting values F0 = 0 and F1 = 1. The first few terms are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, . . .

The term Fn of the Fibonacci sequence is called the n-th Fibonacci number. A closed-form
formula for the n-th Fibonacci number is also well-known:

Fn = 1√
5

(
1 +
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
. (5.47)

The following proposition justifies the name “fibonacene” for this family of benzenoids:

Proposition 5.32. A fibonacene with h hexagons admits Fh+2 Kekulé structures.

Proof. The proof goes by induction on the number of hexagons in the fibonacene. We have
already seen that benzene has F1+2 = 2 Kekulé structures and naphthalene has F2+2 = 3
Kekulé structures.

Take any fibonacene F with h ≥ 3 hexagons. By the induction hypothesis, every
fibonacene with h′ < h hexagons admits Fh′+2 Kekulé structures. Benzenoid F has at least
one hexagon, say a, in L1 mode. Let b denote the hexagon which is adjacent to a. Up
to isometries of H, there is only one possible arrangement of the first three hexagons (see
Figure 5.43(a)). Let e be the edge of hexagon a as shown in the figure. Let Ke denote
the number of Kekulé structures that include edge e and let K∗e denote the number of
Kekulé structures without the edge e. If the edge e is present, then a part of the Kekulé
structure is uniquely determined (see Figure 5.43(b)). The situation is similar when the
edge e is not present in the Kekulé structure, as shown in Figure 5.43(c). It is clear that
Ke = K(F \ {a, b}) = Fh and K∗e = K(F \ {a}) = Fh+1. The total number of Kekule
structures of F is K(F) = Ke +K∗e = Fh + Fh+1 = Fh+2.

Let us now consider the rhomboid family R(h, k), h ≥ 1, k ≥ 1, of convex benzenoids:
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(a) (b) (c)

Figure 5.43: Arrangement of the first three hexagons in a fibonacene.

Proposition 5.33. The rhomboid R(h, k), having h hexagons on the base and k on its side,
admits

(
h+k
h

)
Kekulé structures.

Proof. The proof goes by induction on h+k. Note that R(h, 1) ∼= R(1, h) ∼= L(h). Therefore
K(R(h, 1)) = K(L(h)) = h+1 =

(
h+1
h

)
=
(
h+1

1

)
which establishes the base of the induction.

Now consider a rhomboid with h, k ≥ 2. Let e be its top-most right-most vertical edge
(see Figure 5.44(a)). As in the previous proof, we may write K(R(h, k)) = Ke +K∗e . From

(a) (b)

Figure 5.44: Kekulé structures of the rhomboid R(h, k).

Figures 5.44(a) and 5.44(b) it is clear thatKe = K(R(h, k−1)) andK∗e = K(R(h−1, k)). It
follows thatK(R(h, k)) = K(R(h, k−1))+K(R(h−1, k)) =

(
h+k−1
h

)
+
(
h+k−1
h−1

)
=
(
h+k
h

)
.

Note that benzenoids T3(n), n ≥ 2, T4(n,m), n > m ≥ 2, and P (n,m, k), n ≥ 2,
are non-Kekulean. This immediately follows from Corollary 5.30. The equilateral triangle
T3(n) has n ≥ 2 valleys, but only one peak. The equilateral trapezoid T4(n,m) has m peaks
and n valleys, but n > m. The pentagonal benzenoid P (n,m, k) has n ≥ 2 valleys, but
only one peak. It is clear that a PPS cannot exist in any of those cases.

The case of the hexagonal benzenoid H(n,m, k, t) is more involved. Note that it has n
valleys and t peaks. By Corollary 5.30, n = t is a necessary condition for H(n,m, k, t) to
be Kekulean. Let us define

O(n,m, k) = H(n,m, k, n). (5.48)
The equation for obtaining the Kekulé number of the hexagonal benzenoid was already
considered in the early papers by Gordon and Davison [83] and Yen [201]. Gordon and
Davison gave the equation

K(O(n, n, n)) =
n−1∏
i=0

(
2n+i
n

)
(
n+i
n

) , (5.49)
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for the special case where n = k = m. Equation (5.49) was attributed to M. R. Everett [83].
They also reported a more general equation

K(O(m,m, n)) =
m−1∏
i=0

(
m+n+i

n

)
(
n+i
n

) (5.50)

which was deduced by M. Woodger. Unfortunately, no proofs of the above equations were
given in the paper [83]. Later, Cyvin generalised the equation (5.50) to the general case:

K(O(k,m, n)) =
k−1∏
i=0

(
m+n+i

n

)
(
n+i
n

) , (5.51)

but gave no proof. The first proof was published by Bodroža et al. [18]. We will follow their
approach. Equation (5.51) is called the Everett-Woodger-Cyvin formula [18]. Note that the
formula for the number of Kekulé structure of the rhomboid R(n,m) can be obtained from
(5.51) by setting k = 0.

The intersection graph Gij of the i-th peak and the j-th valley of B is a subgraph that
is spanned on vertices that are accessible both from peak pi by going downwards and from
valley vj by going upwards.

Example 5.6. Consider the benzenoid in Figure 5.45. It has three peaks labeled p1, p2
and p3. Its three valleys are labeled v1, v2 and v3. The intersection graph G3,1 is isomorphic

Figure 5.45: A benzenoid where G3,1 ∼= P10.

to the path on 10 vertices. This special case where the intersection graph is a path on an
even number of vertices can be treated as “degenerated” rhomboid R(n, 0). �

The following equation was discovered by John and Sachs:

K(B) = | detW |, (5.52)

where W is an n× n matrix defined as W = [K(Gij)]ni,j=1, where n is the number of peaks
(or valleys). Equation (5.52) is called the John-Sachs formula [101]. If Gij is an empty
graph then K(Gij) = 0. If peaks and valleys are labeled so that pi+1 is to the right of pi
and vi+1 is to the right of vi then equation (5.52) can be written as

K(B) = detW. (5.53)
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It is easy to see that Gij
∼= R(m+ i− j, k− i+ j) and consequently K(Gij) =

(
m+k
m+i−j

)
. By

using the John-Sachs formula (5.53) we obtain:

K(O(k,m, n)) =
∣∣∣( m+k
m+i−j

)∣∣∣n
i,j=1

. (5.54)

In the above expression
∣∣∣( m+k
m+i−j

)∣∣∣n
i,j=1

denotes the determinant of the matrix
[(

m+k
m+i−j

)]n
i,j=1

.

Lemma 5.34 (Bodroža et al., Lemma 1 in [18]). The determinant

Dn =
∣∣∣∣∣
(
k + n− i
n− j

)∣∣∣∣∣
n

i,j=1

is equal to 1 for all n ≥ 1.

Proof. The proof goes by induction on n. The determinant D1 =
(
k
0

)
= 1 which is the base

of induction.
Consider Dn+1. For all i = 1, 2, . . . , n− 1 subtract the (i+ 1)-th row of Dn+1 from i-th

row. This does not change the value of Dn+1. By applying the well-known combinatorial
identity (

p
q

)
−
(
p−1
q

)
=
(
p−1
q−1

)
, (5.55)

we obtain

Dn+1 = det
[
Dn 0n×1

A1×n
(
k
0

) ] , (5.56)

where A1×n =
[(
k
n

) (
k

n−1

)
. . .

(
k
1

)]
. From (5.56) it follows that Dn+1 = Dn which proves

the lemma.

Theorem 5.35 (Bodroža et al., Theorem 1 in [18]). The following equation holds:

Fn :=
∣∣∣∣∣
(

m+ k

m+ i− j

)∣∣∣∣∣
n

i,j=1
=

n−1∏
i=0

(
m+k+i
m

)
(
m+i
m

) . (5.57)

Proof. Add the (i+ 1)-th row of Fn to the i-th row for all i = 1, 2, . . . , n− 1 and apply the
identity (

p
q

)
+
(

p
q+1

)
=
(
p+1
q+1

)
(5.58)

to obtain
F (1)
n =

∣∣∣∣∣
(

m+ k + δi≤n−1

m+ i− j + δi≤n−1

)∣∣∣∣∣
n

i,j=1
(5.59)

where δi≤n−1 is generalisation of the Kronecker δ symbol: Let P be any logical expression.
Then

δP =

1, if P ;
0, otherwise.
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Then for all i = 1, 2, . . . , n− 2 add the (i+ 1)-th row of F (1)
n to the i-th row which gives us

F (2)
n =

∣∣∣∣∣
(

m+ k + δi≤n−1 + δi≤n−2

m+ i− j + δi≤n−1 + δi≤n−2

)∣∣∣∣∣
n

i,j=1
. (5.60)

If we continue in this manner, we obtain a series of determinants

F (0)
n , F (1)

n , F (2)
n , . . . , F (n−1)

n (5.61)

where
F (l)
n =

∣∣∣∣∣
(

m+ k +∑l
t=1 δi≤n−t

m+ i− j +∑l
t=1 δi≤n−t

)∣∣∣∣∣
n

i,j=1
(5.62)

Note that Fn = F (0)
n . It is clear that

F (0)
n = F (1)

n = F (2)
n = · · · = F (n−1)

n . (5.63)

It is easy to see that

F (n−1)
n =

∣∣∣∣∣
(
m+ k + n− i
m+ n− j

)∣∣∣∣∣
n

i,j=1
. (5.64)

Recall that
(
p
q

)
= p!

q!(p−q)! . The right hand side of (5.64) equals
∏n
l=1(m+ k + n− l)!∏n
l=1(m+ n− l)!

∣∣∣∣∣ 1
(k − i+ j)!

∣∣∣∣∣
n

i,j=1
=

=
∏n
l=1(m+ k + n− l)!∏n
l=1(m+ n− l)! ·

∏n
l=1(n− l)!∏n

l=1(k + n− l)!

∣∣∣∣∣ (k + n− i)!
(k − i+ j)!(n− j)!

∣∣∣∣∣
n

i,j=1︸ ︷︷ ︸
Dn=1

=

=
n−1∏
i=0

(m+k+i)!
m!(k+i)!
(m+i)!
m!i!

=
n−1∏
i=0

(
m+k+i
m

)
(
m+i
m

) . (5.65)

Note that

K(O(k,m, n)) = K(O(k, n,m)) = K(O(m,n, k)) =
= K(O(m, k, n)) = K(O(n,m, k)) = K(O(n, k,m)), (5.66)

since O(k,m, n) ∼= O(k, n,m) ∼= · · · ∼= O(n, k,m), i.e., if we rotate or reflect the benzenoid
its Kekulé number does not change. This means that we may permute the numbers k, m
and n in (5.51) and we obtain:
Corollary 5.36. The following equation holds:

k−1∏
i=0

(
m+n+i

n

)
(
n+i
n

) =
k−1∏
i=0

(
n+m+i
m

)
(
m+i
m

) = · · · =
m−1∏
i=0

(
k+n+i
n

)
(
n+i
n

) . (5.67)

The equation (5.51) gives us the number of Kekulé structures in the hexagonal benzenoid
H(n,m, k, t) for the case when n = t. If n 6= t then from Corollary 5.30 it follows that
H(n,m, k, t) has no Kekulé structures.
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5.7.3 A linear-time algorithm
In this section, we will need the notion of a generalised benzenoid system. In [181] it is
defined in the following way:

Definition 5.25. A generalised benzenoid graph is a finite plane subgraph of the infinite
hexagonal lattice such that every bounded face is a unit hexagon of the hexagonal lattice.

Let H1, . . . , Hm be disjoint subgraphs of G. With G/(H1, . . . , Hm) we will denote a new
graph which is obtained from G in the following way: Start with the graph G − (H1 ∪
· · · ∪ Hm). For every subgraph Hi add a new vertex hi to that new graph. If a vertex
v ∈ V (G− (H1 ∪ · · · ∪Hm)) was adjacent to a vertex of Hi in G then connect v and hi in
the new graph. The resulting graph is G/(H1, . . . , Hm).

Our equivalent to Definition 5.25 is:

Definition 5.26. Let B = B1 t · · · t Bm be a disjoint union of (zero or more) benzenoids
in the infinite hexagonal grid H. A generalised benzenoid system G is a subgraph of the
hexagonal lattice such that G(B) ⊆ G and G/(G(B1), . . . , G(Bm)) is a forest.

For an example of a generalised benzenoid graph see Example 5.7. Note that a GBG (gen-
eralised benzenoid graph) is a generalisation of the class of benzenoid graphs, but is not
a generalisation of the class of coronoid graphs. The notions of boundary- and internal
vertices and edges of a benzenoid can be naturally generalised to generalised benzenoid
systems. Let b(G) and w(G) denote the number of black and white vertices of G, respec-
tively. Let F be a Kekulé structure of G. Here, edges F and E(G) \ F will be called red
and green edges, respectively.

Let P1 and P2 be two distinct points in the plane (in which the hexagonal lattice is
embedded). The straight line segment P1P2 is called a cut segment if it is perpendicular
bisector of two boundary edges of G and no point of P1P2 lies in the exterior face of G
[106]. Let C denote the set of all those edges that P1P2 meets. Then C is called the cut
corresponding to P1P2. We will slightly extend this notion to also include bridges of G,
i.e., edges that are not adjacent to any bounded face of G. Note that G− C has one more
connected component than the graph G. See Example 5.7 to get familiar with the notion
of cut segments and cuts.

Example 5.7. A generalised benzenoid system is in Figure 5.46. Some of its cut segments
and their corresponding cuts are shown in the figure. Edges that belong to the same cut
are coloured with the same colour. The singleton that contains the orange edge (it is not
incident with any finite face and is therefore a bridge) is also considered to be a cut. �

Let G be a connected generalised benzenoid system and let C be a cut. Note that when
the edges of C are removed, their end vertices that are of the same colour reside in the
same connected component of G−C. Connected components of G−C are called the black
bank and the white bank and are denoted B(C) and W (C), respectively. The next lemma
follows immediately:

Lemma 5.37. Let G be a connected generalised benzenoid system that admits a Kekulé
structure. Then b(G) = w(G). Moreover, for every cut C the number of red edges which
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Figure 5.46: A generalised benzenoid system and some of its cuts.

are contained in C equals ∆(C) := b(B(C)) − w(B(C)) = w(W (C)) − b(W (C)) and 0 ≤
d(C) ≤ |C|. �

Lemma 5.38. Let C be a coronoid with a fixed embedding in the hexagonal grid H. Then

w(C)− b(C) = p(C)− v(C).

Proof. If C is a coronoid with a fixed embedding, then the vertices of C can be partitioned
into 3 classes:

(a) peaks (white vertices);

(b) valleys (black vertices);

(c) vertices that are incident to a vertical edge.

The vertices that fall under (c) can be further divided into black and white subclasses and
the vertical edges define a matching between the two subclasses. Let ν denote the number
of vertical edges. Then w(C) = p(C) + ν and b(C) = v(C) + ν. Therefore,

w(C)− b(C) = (p(C) + ν)− (v(C) + ν) = p(C)− v(C).

Let H be a subgraph of G. Then p(G,H) denotes the number of peaks of G that are
contained in the subgraph H. Similarly, v(G,H) denotes the number of valleys that are
contained in H.

Lemma 5.39. Let C be a horizontal cut of a benzenoid (with a fixed embedding). Then

b(B(C))− w(B(C)) = |C|+ v(G,B(C))− p(G,B(C)). (5.68)

Proof. Vertices of B(C) can be partitioned into 4 classes:

(a) end vertices of C (black vertices);

(b) vertices that are incident to a vertical edge in B(C);
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(c) peaks of G that lie inside B(C) (white vertices);

(d) valleys of G that lie inside B(C) (black vertices).

Let ν denote the number of vertical edges in B(C). Then the total number of white vertices
in B(C) is ν + p(G,B(C)) and the total number of black vertices is |C|+ ν + v(G,B(C)).
Equation (5.68) immediately follows.

Note that B(C) “lies above” the cut C (i.e., the black end vertices of C lie above their
corresponding white vertices of C).

Lemma 5.40. Let G be a benzenoid graph with a Kekulé structure. Then p(G) = v(G). For
every cut C, the number of red edges (i.e., those that are contained in the Kekulé structure)
equals

∆(C) := b(B(C))− w(B(C)) = |C|+ v(G,B(C))− p(G,B(C)).

Proof. Let F be a matching (a Kekulé structure) in G. If we restrict F to graph B(C),
then exactly ∆(C) black vertices of B(C) remain unmatched. Those vertices are matched
with some white vertices from W (C) and this can only be achieved by using edges of C.
With other words, the number of red edges in C equals ∆(C). Everything else follows from
Lemma 5.38 and Lemma 5.39.

Corollary 5.41. Let G be a benzenoid graph with a Kekulé structure. Then for every cut
C, the number of green edges (i.e., those that are not contained in the Kekulé structure)
equals

∆∗(C) := p(G,B(C))− v(G,B(C)) = v(G,W (C))− p(G,W (C)).

�

This is a straightforward consequence of |C| = ∆(C) + ∆∗(C). Note that 0 ≤ ∆(C) ≤ |C|
and 0 ≤ ∆∗(C) ≤ |C|.

Proposition 5.42. Let G be a benzenoid graph. Let n2 and n3 denote the number of degree
2 vertices on its boundary and the number of degree 3 vertices on its boundary, respectively.
Then n2 − n3 = 6. �

The proof can be found in [102] and is therefore omitted.

Corollary 5.43. The boundary of a benzenoid has at least six (2, 2)-edges.

Proof. Let a, b and c be the number of (2, 2)-edges, (2, 3)-edges and (3, 3)-edges on its
boundary, respectively. Then 2a + b = 2n2 and 2c + b = 2n3. If we subtract the two
equalities we obtain a− c = n2 − n3 = 6. Because c ≥ 0, it follows that a ≥ 6.

Lemma 5.44. Let B be a Kekulean benzenoid and F one of its Kekulé structures. Let C
be a horizontal cut such that p(B, B(C)) − v(B, B(C)) < |C| and the left-most edge e ∈ C
is a (2,2)-edge. Then there exists a Kekulé structure F ′ that contains the edge e.
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Figure 5.47: Recolouring of edges in C.

Proof. By Corollary 5.41, C contains at least one edge of F . If e ∈ F then take F ′ = F .
If e /∈ F then let e′ ∈ C be the left-most edge that is contained in F (see Figure 5.47).
The Kekulé structure can be uniquely determined for the coloured edges in Figure 5.47.
The edges on the alternating cycle can be recoloured as shown in Figure 5.47 to obtain the
desired Kekulé structure F ′ from F .

We will describe the algorithm by Sachs that finds a perfect matching (if it exists) in a
GBG or decides that there is no perfect matching. A GBG G has a Kekulé structure if every
connected component of G has a Kekulé structure, thus we can assume that G is connected.
if it is not connected, run the algorithm on every connected component seperately.

At each step, the algorithm colours some edges of G (with red and green) and removes
them from G. There are 2 cases to consider:

Case 1. G contains a bridge e. Consider the cut C = {e}. Determine

∆(C) = b(B(C))− w(B(C)).

(i) If ∆(C) < 0 or ∆(C) > 1, then report that there is no perfect matching.

(ii) If ∆(C) = 0, colour the edge e green.

(iii) If ∆(C) = 1, colour edge e red and colour its incident edges green.

Case 2. G does not have a bridge. Then G is a benzenoid. We can find a (2, 2)-edge e
that is on the boundary of the benzenoid and in vertical position. Let C denote the cut
that contains e. Determine

∆∗(C) = p(G,B(C))− v(G,B(C)).

(i) If ∆∗(C) < 0 or ∆∗(C) > |C| then report that G does not admit a perfect matching.

(ii) If ∆∗(C) = |C| then colour all edges of C green.

(iii) If ∆∗(C) = 0 then colour all edges of C red and their incident edges green.

(iv) If 0 < ∆∗(C) < |C| then colour e red and edges that are incident to e green (this can
be done due to Lemma 5.44). Moreover, if ∆∗(C) = |C|−1 then colour the remaining
edges of C green.
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In any case, discard the coloured edges and continue this procedure on the GBG that
remains. All edges that get coloured red during this procedure belong to the matching.

Note that when implementing the above algorithm, one has to carefully choose the data
structures. If one is not careful enough with the implementation then the result may be an
algorithm whose time complexity is worse than linear.



Chapter 6

Patches

In this chapter we generalise benzenoids and coronoids to patches and perforated patches,
respectively. Essentially, a patch is a (2-connected) plane graph similar to a benzenoid in
which various polygons may be used instead of hexagons alone. All internal vertices are of
degree 3, whilst boundary vertices are of degree 2 or 3 (see example in Figure 6.1).

Figure 6.1: A patch.

Our “traditional” definition generalises one used by Jack Graver and other authors
[30, 56, 86, 87, 88, 89, 90, 91]. Each patch has a unique boundary-edges code, but in
contrast to benzenoids, which are uniquely determined by their boundary-edges codes, the
boundary-edges code of a patch may belong to more than one patch or even to a fullerene
patch (as defined below).

Definition 6.1. A patch Π is either a cycle or a 3-valent 2-connected plane (multi)graph
with a distinguished outer face, where the edges of the outer face may be arbitrarily subdi-
vided.

In the following example we depict some benzenoids as patches arising from plane cubic
graphs.

Example 6.1. Some plane cubic 2-connected graphs may be expanded to benzenoids; see
Figure 6.2. The graph on the right hand side is obtained from the graph on the left hand
side by sibdividing some of the edges on the outer face. A cycle of arbitrary length can be
obtained from a loop. �

Example 6.2. The graph in Figure 6.3 does not give rise to any patch. �

163
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(a) benzene

(b) naphthalene

(c) anthracene

(d) phenanthrene

(e) phenalene

Figure 6.2: Smallest benzenoids as patches. Benzene is obtained from a loop and the rest
are obtained from plane cubic 2-connected graphs.
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Figure 6.3: A plane cubic graph that is not 2-connected does not have a boundary cycle
and is therefore not able to produce any patch.

Clearly, a patch is a proper generalization of a benzenoid.

Definition 6.2. A patch Φ with interior faces pentagons and hexagons is called a fullerene
patch.

The above Definition 6.2 is the one that is used by Graver et al. [87, 88].

Definition 6.3. A patch Φ with interior faces hexagons is called a helicene patch.

Note that a helicene patch is sometimes called a helicene. Also note that the following is
true:

Proposition 6.1. Each benzenoid is a helicene patch but there are helicene patches that
are not benzenoids.

Proof. The implication follows directly from the definition. It is not an equivalence, since
each proper helicene such as the one from Figure 6.4 is a counter-example to the converse.

Figure 6.4: Not all patches with internal 6-cycles are benzenoids. The patch in this figure
is a helicene.

The boundary-edges code can be naturally generalised to patches. We can define:

Definition 6.4. A patch Π is convex if its boundary-edges code contains no 1.
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6.1 New approach to patches and perforated patches
We will present a mathematical formalisation which is based on the treatment of coronoids
and benzenoids in Section 5.4. We have seen that our definition of a fullerene patch is
compatible with Graver’s definition [87, 88]. There is also a notion of a (m, k)-patch which
received a lot of attention in the past years [25, 30, 86, 95]. By our definition, faces may
have a range of different degrees, but m = 3.

Our point of departure is a finite plane cubic (simple) graph G, which divides the
Euclidean plane R2 into several regions called faces. The collection of all faces is denoted
FG. One face is unbounded and the rest are bounded. Two examples of plane cubic graphs
are in Figure 6.5. Note that in Section 5.4, the role of graph G was taken by an infinite

(a) (b)

Figure 6.5: Two examples of cubic plane graphs.

cubic graph with all faces hexagons which we called hexagonal lattice. Here we restrict our
attention to finite graphs G. Later on, we will compare finite and infinite versions of this
theory.

The hexagonal lattice has additional nice properties. First of all, no two faces of H
share more than one edge; the graph in Figure 6.5(b) does not have that property. Also,
no face of H is incident with itself; the graph in Figure 6.5(a) does not have that property,
since one if its edges is incident to only one face (the outer face). Here, we also permit
graphs which are not 2-connected, such as the one in Figure 6.5(a).

Let P ⊆ FG be some arbitrary subcollection of faces and let a, b ∈ P . We say that a
and b are adjacent, a ∼ b, if they share an edge. We define relation ≡P by the same way as
before, i.e., a ≡P b if there is a sequence c0 = a, c1, c2, . . . , cm = b such that ci−1 ∼ ci and
ci ∈ P . P is connected if a ≡P b for any a, b ∈ P . The set P is naturally decomposed into
connected components.

Definition 6.5. Let G be any finite plane cubic graph. A proper subset P ⊂ FG is called
a perforated patch if it is connected.

Definition 6.6. Let G be any finite plane cubic graph. A proper subset P ⊂ FG is called
a patch if P is connected and P{ = FG \ P is also connected.

Observe that finiteness of set K in Definitions 5.5 and 5.6 implies that K is a proper subset
of H. In this finite version of those two definitions we had to make that explicit.

Most observations of the previous section about coronoids and benzenoids are also true
for their corresponding generalisations, namely perforated patches and patches. In some
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cases the proof remains essentially the same and in some cases it slightly simplifies, since
we do not have to deal with infinity anymore. We will transcribe results of the previous
section into this new language and omit the proofs. When appropriate, we will give some
clarifications. For our considerations, only the combinatorial data are relevant (adjacency
between faces and the cyclic ordering of edges incident to a common vertex). Geometric
details of the drawing are unimportant. Moreover, the outer face does not play a special
role. The graph G could also be embedded on the sphere S2, where all faces would be
bounded. All the combinatorial information would, of course, remain exactly the same.
Lemma 6.2. Let G be any finite plane cubic graph and let ∅ 6= P ⊆ FG. Let a ∈ P be any
of its faces. Then a belongs to some connected component Ci of P. Let b ∈ N(a). Then
either b ∈ Ci or b ∈ P{. �

Lemma 6.3. Let G be any finite plane cubic graph and let ∅ 6= P ⊂ FG. Let Ca be any
connected component of its complement P{. Then there exists a face ã ∈ Ca that is adjacent
to some face in P. �

Lemma 6.4. Let G be any finite plane cubic graph and let P be a perforated patch. Let Ca
be a connected component of its complement P{, a ∈ Ca and p ∈ P. Then a ≡P∪Ca p. Let
Cb be another connected complement of P{. Then a ≡P∪Ca∪Cb b. �

The above Lemma 6.4 corresponds to both Lemma 5.5 and Corollary 5.6.
Lemma 6.5. Let G be any finite plane cubic graph and let ∅ 6= P ⊆ FG. Then the
complement P{ of P consists of finitely many connected components:

P{ = C1 t C2 t · · · t Cd.

Each of the components Ci, i ≥ 1, is a perforated patch. If P is a perforated patch, then
each Ci is a patch. �

The above Lemma 6.5 corresponds to both Lemma 5.4 and Theorem 5.7. Since we do not
have to deal with an infinite number of faces, the proof becomes trivial. The definition of
the benzenoid closure was natural. Here, one should be slightly more careful:
Definition 6.7. Let P be a perforated patch. The closure of P with respect to p ∈ P{,
denoted Cl(P , p) is the intersection of all those patches which include P as a subset and do
not contain p among their faces, i.e.,

Cl(P , p) =
⋂
{Q | Q is patch ∧ P ⊆ Q ∧ p /∈ Q}.

Let us investigate what happens if the extra condition, i.e., exclusion of a designated face
p, is omitted. By Lemma 6.5, P{ = C1 t C2 t · · · t Cd where each Ci is a patch. Define
Pi := P t C1 t . . . t Ci−1 t Ci+1 t · · · t Cd. It is easy to see that each Pi, 1 ≤ i ≤ d, is a
patch. Clearly, P ⊆ Pi for each i = 1, . . . , d. But ⋂ {Pi | 1 ≤ i ≤ d} = P . Without that
extra condition the definition would not make sense. In most cases this “forbidden” face
p can be chosen in advance and one can deal with only those perforated patches which do
not include face p. Then we can write Cl(P) instead of Cl(P , p) without introducing any
ambiguity. The most natural candidate for the forbidden face is, of course, the outer face.
Let us denote Pat(P , p) = {Q | Q is patch ∧ P ⊆ Q ∧ p /∈ Q} for convenience. Lemma 5.8
and Proposition 5.9 give rise to the following analogue in the theory of perforated patches:
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Lemma 6.6. Let P be a perforated patch and p ∈ P{ a face in its complement. Let
P{ = C1 t C2 t · · · t Cd as in Lemma 6.5. Then the closure of P with respect to p is

Cl(P , p) = P t C1 t · · · t Cj−1 t Cj+1 t · · · t Cd,

where Pj is the connected component of P{ which includes p among its faces, i.e., p ∈ Cj.
Moreover, the closure with respect to p is an operation on the set of perforated patches
without p that satisfies the following conditions:

(a) P ⊆ Cl(P , p),

(b) P ⊆ Q =⇒ Cl(P , p) ⊆ Cl(Q, p), and

(c) Cl(Cl(P , p), p) = Cl(P , p).

�

The following lemma is an analogue to Definition 5.8 and Lemma 5.10 from the theory of
coronoid hydrocarbons:

Lemma 6.7. Let P be a perforated patch such that p /∈ P. Let P̃ ⊆ FG satisfy the following
conditions:

(i) P̃ is a patch without p,

(ii) P ⊆ P̃, and

(iii) P ⊆ Q =⇒ P̃ ⊆ Q for every patch Q without p.

This P̃ is unique and P̃ = Cl(P , p). �

Figure 6.6: The intersection of two patches may be a perforated patch.

Some caution should be used in making the analogy with Lemma 5.11: as seen in Figure 6.6,
the intersection of two patches may be a perforated patch. However, the following is true:

Lemma 6.8. Let P and Q be two patches such that their complements share a face, i.e.,
P{ ∩Q{ 6= ∅. Then the intersection of patches P and Q is a union of disjoint patches. �
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To obtain a perforated patch we choose a set of faces of the plane cubic graph G that
constitute a connected region. Sometimes we talk about “removing faces”. This means that
we select members of the complement, i.e., faces that will not be present in the perforated
patch.
Given a perforated patch as a plane graph it is not possible to detect (in the general case)
which faces are corona holes and which not. An example is given in Figure 6.7. Therefore,
plane graphs do not give a sufficient model for perforated patches. One has to indicate
which faces are actually present, and which are not. This means that Lemma 5.16 has no
equivalent in this theory.

Figure 6.7: Two distinct perforated patches with the same skeleton. The faces that we
removed, i.e., the faces in the complement, are indicated by shading and the corresponding
hole is also shaded.

A patch is called k-connected when its skeleton is k-connected. A face which is incident
to an edge from both sides is called an ill-behaved face. The following proposition precisely
characterizes 2-connected patches:

Proposition 6.9. A patch P is 2-connected if and only if it contains no ill-behaved faces.

Proof. An ill-behaved face implies there is a bridge (cut-edge) so it is not 2-connected. If
there are no ill-behaved faces: start with a single face. Its skeleton is a cycle which is
2-connected. Then iteratively add adjacent faces. The newly added edges form one or
more paths that are connected to the existing graph. In this way we construct an ear-
decomposition.

It is possible to generalise this theory for the case when the cubic planar graph G is infinite.
The standard embedding of the hexagonal lattice is such an example. If one tries to use
an arbitrary infinite cubic graph, problems of topological nature may arise. Some remarks
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must therefore be made. The hexagonal grid, as we will see, has certain nice properties.
In the proof of Lemma 5.3 we use the fact that ∪∞n=0Pn = H, with Pn defined as in the
proof of Lemma 5.3, without proving it. This holds when there exists a finite pathway of
faces between any two faces of the plane graph. With other words, the distance between
every two vertices of the dual graph is finite. The hexagonal grid is an example. If this was
not the case, the proof of Lemma 5.3 would fail. Another important building block of this
theory is Lemma 5.4. In its proof, when we claim that P{ is connected, we implicitly use
the Jordan curve theorem. This renowned theorem seems obvious at the first sight, but its
proof happens to be involved (if one attempts to prove it in its full generality). Another
sensitive part of the proof is when we claim that Pn contains finitely many faces. A nifty
topologist could construct such an example where this would fail. Luckily, every bounded
region of the infinite hexagonal grid contains finitely many faces. This is another condition
on the infinite plane graph G that has to be met.



Chapter 7

Altans

Recently a class of molecular graphs, called altans, became a focus of attention of several
theoretical chemists and mathematicians. In this section we study primary iterated altans
and show, among other things, their connections with nanotubes and nanocaps. The ques-
tion of classification of bipartite altans is also addressed. Using the results of Gutman we
are able to enumerate Kekulé structures of several nanocaps of arbitrary length.

7.1 Introduction to altans
Altans were first introduced as special planar systems, obtained from benzenoids by attach-
ment of a ring to all outer vertices of valence two [100, 147], in particular in connection with
concentric decoupled nature of the ring currents (see papers by Zanasi et al. [146, 147, 149]
and also Mallion and Dickens [59, 60]). In Section 3.4.3 we have presented conjugated
circuits, i.e., the graph-theoretical approach to ring current which was initiated by Randić
in 1976 [173]. It was also studied by Gomes and Mallion [82]. Full description is provided
for instance in references [175, 176]. See also paper [72] by Fowler and Myrvold on ‘The
Anthracene Problem’.

Later altans were generalized by Gutman [99] to arbitrary graphs. We essentially follow
Gutman’s approach. Our point of departure is a peripherally rooted graph, i.e., an ordered
pair (G,S) which consists of an arbitrary graph G and a cyclically ordered subset S of its
vertices, called the peripheral root.

Let n denote the order of G and let k denote the cardinality of S. Assume that V (G) =
{0, 1, . . . , n − 1}. The operation A(G,S) maps the pair (G,S) to a new pair (G1, S1) as
follows: Let

S0 = {n, n+ 1, . . . , n+ k − 1} and S1 = {n+ k, n+ k + 1, . . . , n+ 2k − 1}. (7.1)

Let the vertex set of G be augmented by S0∪S1. Through the vertices S0∪S1, we construct
a peripheral cycle graph C of length 2k in the cyclic order

(n, n+ k, n+ 1, n+ k + 1, n+ 2, . . . , n+ k − 1, n+ 2k − 1, n). (7.2)

Finally, we attach C to G by k edges between S and S0 of the form (si, n + i), 0 ≤ i < k,
where si is the i-th vertex of S. The vertices of C that have valence 2 in the final construction

171
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are exactly the ones originating from S1 and are the new peripheral root of the altan. The
new peripheral root, S1, is ordered in the natural way.

Example 7.1. A bipartite graph may give rise to non-bipartite or bipartite altans. Let

0
1

2
3

4

5

(a) G = C6, S = (0, 1, 2, 3, 4, 5)
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(b) A(G,S) = (G1, S1). S1 = (12, 13, 14, 15, 16, 17)
consists of vertices of valence 2 in the natural cyclic
order.

Figure 7.1: The altan of benzene is not bipartite since A(G,S) contains pentagons.

G = C6 and S = (0, 1, 2, 3, 4, 5). Graph G and the non-bipartite A(G,S) are depicted in
Figure 7.1. �

Example 7.2. The altan of the graph G in Figure 7.2 is bipartite. �

bc

a

(a) G, S = (a, b, c)

b′

c′ a′

(b) G, S1 = (a′, b′, c′)

Figure 7.2: Since G is bipartite and all vertices of S belong to the same set of bipartition,
A(G,S) is also bipartite.

Note that the altan in Example 7.1 is non-bipartite, whilst the one in Example 7.2 is
bipartite. We can classify bipartite altans:

Theorem 7.1. Let (G,S) be a graph G with a peripheral root S. The altan A(G,S) is
bipartite if and only if:
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(a) G is bipartite and

(b) members of S belong to the same bipartition set.

Proof. First, we will show that conditions (a) and (b) imply that A(G,S) = (G1, S1) is
bipartite. Let G be bipartite and let us colour its vertices black and white. We may assume
that S has all of its vertices coloured black. Their adjacent vertices, S0, can be coloured
white. This can be further extended, by colouring S1 black, to a proper black and white
vertex colouring of G1. Hence G1 is bipartite. Furthermore, (G1, S1) also satisfies the
conditions (a) and (b) of the Theorem.

Now we prove the other direction. Let A(G,S) be bipartite. Graph G is a subgraph of
G1, so it is also bipartite. If G is bipartite but not all vertices of S are coloured with the
same colour, then two consecutive vertices of S, say u and v, would be coloured differently.
Recall that vertices of S are cyclically ordered. Hence there is a u, v-path in G of odd
length. By attaching the cycle C to G to form A(G,S) it is possible to connect u to v by a
path of length 4. This means there is a cycle of odd length in graph G1, a contradiction.

From the definition of the altan operation it follows that we may repeat it several times.
Let An(G,S) denote the n-th altan of (G,S), i.e.,

A(A(· · ·A︸ ︷︷ ︸
n

(G,S) · · · )). (7.3)

We obtain the following consequence of Theorem 7.1:

Corollary 7.2. Let (G,S) be a graph with peripheral root S and let n ≥ 1 be an arbitrary
integer. An(G,S) is bipartite if and only if (G,S) satisfies the conditions of Theorem 7.1.

Proof. It follows by induction. The basis of induction is given by Theorem 7.1.

7.2 Altans of benzenoid systems
Let B be a (finite) benzenoid. The altan of B is assumed to have the cyclically ordered
peripheral vertices, S, of valence 2. Their order is obtained by traversing B along its
perimeter.

Theorem 7.3. For any finite benzenoid B, the altan A(B) is non-bipartite.

This theorem is evident from the considerations in [100]. Nevertheless, we will give a short
formal proof here:

Proof. By [102] each finite benzenoid has two consecutive peripheral vertices of valence 2,
say u and v. Both vertices u and v are attached to the outer cycle C of A(B) to vertices u′
and v′ respectively that are two-apart in C. Let w′ be the vertex on C adjacent to both u′
and v′. Vertices uvv′w′u′ form a cycle of length 5. Altan A(B) is not bipartite.

Note that the result follows also from Theorem 7.1. Although B is bipartite, the corre-
sponding peripheral root S is not all coloured with the same color.



174 CHAPTER 7. ALTANS

For a bipartite graph G and a peripheral root S we may define partition Sb and Sw with
black and white coloured sets. For a connected G the partition is unique. We can consider
two bipartite altans A(G,Sb) and A(G,Sw). In case of benzenoids the definition is natural
and the bipartite altans are determined by the benzenoid itself.

Example 7.3. Black and white altans may be isomorphic (see Figures 7.3 and 7.4) or not
(see Figure 7.5.) �

(a) B1 (b) Aw(B1) ∼= Ab(B1)

Figure 7.3: Black and white altans are isomorphic: Aw(B1) ∼= Ab(B1).

Proposition 7.4. If G is bipartite, then both A(G,Sb) and A(G,Sw) satisfy conditions of
Theorem 7.1.

Proof. Since all vertices of Sb are coloured black and all vertices of Sw are coloured white,
Theorem 7.1 applies to both black and white altans and the conclusion follows in each
case.

In [99, 100] it was shown that A(G,S) has twice as many Kekulé structures as G. We note
that this number is independent of the order in which we choose the vertices of S. It is
even independent of the choice of S itself. It is not hard to see that An(G) at some point
becomes similar to a hexagonal nanotube with the original graph G as part of the cap. The
structure of the periphery of An(G,S) is composed of a ring of k hexagons where k = |S|.
Here we give the answers to the question of which benzenoids B or more general fullerene
patches will give rise to a capped nanotube An(B).

7.3 Altans of fullerene- and other patches
For a patch Π from Definition 6.1, the altan of the patch, A(Π), is clearly defined, i.e., its
peripheral root contains cyclically ordered vertices of valence 2 on the perimeter.

Proposition 7.5. If Π is a patch with k vertices of valence 2, then A(Π) is a patch with k
vertices of valence 2 and boundary-edges code 2k. Furthermore, the faces of Π are augmented
by a ring of k faces to form the internal faces of A(Π).

Proof. This follows directly from the definition of altans.
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(a) B2

(b) Ab(B2) (c) Aw(B2)

Figure 7.4: Black and white altans are isomorphic, Ab(B2) ∼= Aw(B2), but are oppositely
oriented.

A (k, 1)-nanotube is a ring of k hexagons. We may view it as the black altan of a cycle
on 2k vertices: Ab(C2k). If we glue s such rings one on top of the other we obtain a (k, s)-
nanotube. Be warned that this notation is used by various authors to denote something
else. From Proposition 7.5 we obtain:

Corollary 7.6. If Π is a patch with boundary code 2k then the ring of faces attached to Π
when forming A(Π) is a (k, 1)-nanotube. �

Corollary 7.7. Let Π be an arbitrary patch with k vertices of valence 2. The iterated altan
An(Π) is composed of A(Π) to which a (k, n− 1)-nanotube is attached.

Proof. It follows easily by induction.

Proposition 7.8. Let Π be a patch. The ring of new faces of A(Π) contains only faces of
length ≥ 5 and A(Π) is convex.

Proof. Each vertex of valence 2 on the peripheral cycle is adjacent to two vertices of valence
3. Therefore each new face of A(Π) contains at least 3 peripheral vertices. It must contain
at least two old vertices. Actually it will contain two consecutive old vertices if and only if
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(a) B3

(b) Ab(B3) (c) Aw(B3)

Figure 7.5: Black and white non-isomorphic altans Ab(B3) � Aw(B3).

they were adjacent boundary vertices of valence 2 of Π. By definition A(Π) is convex by
Proposition 7.5.

Proposition 7.9. Let Π be a patch. The ring of new faces of A(Π) contains only faces of
length 5 or 6 if and only if Π is convex.

Proof. The pentagons are covered already in the proof of Proposition 7.8. A face of length
> 6 appears if and only if the boundary edges code contains one or more consecutive 1s.

Theorem 7.10. A benzenoid B will give rise (by applications of the altan operation) to a
fullerene nanotube (capped on one side) if and only if B is convex.

Proof. It follows by induction from Proposition 7.9.

Theorem 7.11. If Π is a convex fullerene patch with p pentagons and boundary-edges code
BEC (Π) = (2 + a1)(2 + a2) . . . (2 + ak), ai ≥ 0, d = a1 + a2 + . . .+ ak. Then d+ p = 6 and
A(Π) is a fullerene patch with boundary-edges code 2k+d and 6 pentagons.

The patch with a single hexagon (its boundary-edges code is 6) is an exception. Its altan
is a fullerene patch with 6 pentagons and boundary-edges code 26.
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Figure 7.6: (k, 1)-nanotube

This result may be viewed as a consequence of the fact that a nanotube may be capped
only by a fullerene patch having 6 pentagons. All action takes place at the initial step
passing from Π to A(Π) since the width of the tube does not change after eventual iterated
applications of altan operation.

7.4 Kekulé structures of iterated altans
We have seen that An(G) behaves essentially like a capped nanotube. In the first step from
G to A(G) all irregularities happen. After that each An+1(G) is obtained from An(G) by
attaching a ring of hexagons to its periphery.

Gutman [99] proved the following:

Lemma 7.12 (Gutman, 2014). Let G be a graph having K = K(G) Kekulé structures.
Then any of its altans A(G) has 2K Kekulé structure, i.e., twice the number of Kekulé
structures. �

We may apply it to the iterated altans:

Theorem 7.13. The number of Kekulé structures in the n-th iterated altan of G is 2nK(G).

Proof. From Gutman’s Lemma by induction.

This result has many interesting consequences. The first one is confirmation of the
result of Sachs et al. [182] that the number of Kekulé structures of a (k, s)-nanotube is
independent of k and is equal to 2s+1. More generally we may compute the number of
Kekulé structures of any patch extended by a nanotube.

Corollary 7.14. Let Π be a patch then K(An(Π)) = 2nK(Π).

In particular this means that a nanotube capped by six pentagons (half of a dodecahe-
dron) has no Kekulé structures, while the nanotube capped by half of the buckyball and its
11 Kekulé structures gives rise to the total of 11× 2n Kekulé structures. We should men-
tion that our nanotubes correspond to a very special untwisted case of much more general
nanotubes, alias tubules considered in the 73-page paper [182].
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· · ·

· · ·

s

k

Figure 7.7: (k, s)-nanotube

(a) (b)

(c) (d)

Figure 7.8: A cap Π with a single pentagon (see (a), (b)) that turns into a bucky-ball dome
A(Π) with six pentagons (see (c), (d)) after the first altan and to a longer capped nanotube
after any additional altan operation.
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7.5 Generalised altans and iterated altans
We will start by making a small extension to the definition of an altan as presented previ-
ously. Let G be a graph and let C, the perimeter, be a cycle in G having k ≥ 2 vertices of
degree 2. Then A(G,C) will be the altan as defined previously with respect to the degree-2
vertices of C. Those edges which connect degree-3 vertices on the new cycle with C will be
called spokes.
Example 7.4. See Figure 7.9. �

a
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(a) G, C = (1, a, 2, b, 3, c, 4, d, 5, e)
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(b) G′ = A(G,C), C ′ = (1′, 1′′, 2′, 2′′, 3′, 3′′, 4′, 4′′, 5′, 5′′)

Figure 7.9: A graph G with a designated perimeter C (on the left), and its altan A(G,C)
(on the right).

A generalised altan is obtained by selecting a collection of cycles C1, C2, . . . , Ck in G
with the property that any degree-2 vertex of G appears on at most one of the cycles and
that each of the cycles Ci contains at least 2 vertices of degree 2. We call (G;C1, . . . , Ck) an
admissible structure. In addition we select a non-empty subset of indices J ⊆ {1, 2, . . . , k}
and perform the altan operation on all cycles Cj, j ∈ J . We define

A(G;C1, . . . , Ck; ∅) = (G;C1, C2, . . . , Ck),

and
A(G;C1, . . . , Ck; J) = A(G′;C1, . . . , Cj−1, C

′
j, Cj+1, . . . , Ck; J \ j),

for J 6= ∅, where j = min J . Graph G′ is obtained from G by adding a new copy, denoted
C ′j, of a cycle on 2d vertices, where d is the number of degree-2 vertices on cycle Cj. Every
second vertex on cycle C ′j is attached to a degree-2 vertex on Cj. Usually we take either
|J | = 1 or |J | = k. In the former case we are dealing with the ordinary altan operation. In
the latter case all perimeters are used.
Example 7.5. Let G be the subdivided cube in Figure 7.10. Let C1 = (1, 2, 3, 4, 7, 6, 5),
C2 = (1, 5, 9, 10, 14, 8) and C3 = (10, 11, 12, 13, 16, 15, 14). Then (G;C1, C2, C3) is an
admissible structure. Note that cycles C1, . . . , Ck of an admissible structure need not
be disjoint as long as no degree-2 vertex lies on a shared part. The generalised altan
A(G;C1, C2, C3; {1, 2, 3}) is on the right in Figure 7.10.

We may apply the generalised altan operation iteratively. The order in which we apply
individual “local” altan operations is irrelevant.
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7.5.1 Iterated generalised altans

Let (G;C1, C2, . . . , Ck) be an admissible structure. Let n = (n1, n2, . . . , nk) be an integer
vector with ni ≥ 0. Let n† = (n†1, n†2, . . . , n†k) where

n†i =

ni − 1, if ni > 0
0, otherwise.

Moreover, let J†n = {i | ni > 0}. Then

An(G;C1, . . . , Ck)

denotes the iterated generalised altan which is defined in terms of the generalised altan in
the following way:

An(G;C1, . . . , Ck) = An†(A(G;C1, . . . , Ck; J†n)).

Naturally, A0(G;C1, . . . , Ck) = (G;C1, . . . , Ck) where 0 = (0, 0, . . . , 0).

Example 7.6. Consider the admissible structure (G;C1, C2, C3) from Example 7.5. The
iterated generalised altan A(1,0,2)(G;C1, C2, C3) is shown in Figure 7.11.

5 7

10 12

1 3

14 16

6

4

2

15

13

11
98

Figure 7.10: A subdivided cube (on left) and its generalised altan (on right).

Figure 7.11: The iterated generalised altan A(1,0,2)(G;C1, C2, C3).
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7.5.2 Altans of coronoids and perforated patches
From now on, by a coronoid we mean a non-degenerate coronoid. Each coronoid K with
its perimeters is an admissible generalised altan structure. Hence, An(K) is well-defined as
soon as we label its perimeters. Note that the cycles are exactly perimeters and they are
disjoint. When n 6= 0, we call An(K) a proper generalised altan.

Example 7.7. Let K be the coronoid in Figure 7.11 (the part consisting of dotted faces).
Let C1 denote the left inner perimeter, C2 the right inner perimeter and C3 the outer
perimeter. Generalised altan A(2,3,0)(K) consists of shaded and dotted faces in Figure 7.12.

Figure 7.12: A(2,3,0)(K).

Proposition 7.15. A proper generalised altan of a coronoid is not a coronoid.

Proof. In the case of a benzenoid, we restate Gutman’s observation [100] on the structural
features of altan-benzenoids. Every benzenoids contains a (2, 2)-edge, i.e., an edge connect-
ing two degree-2 vertices. Figure 7.13(a) shows a fragment of a benzenoid with a (2, 2)-edge.
This gives rise to a pentagon in its altan. (The new vertices that are obtained by the altan
operation are distinguished by shading.)

(a) (b)

Figure 7.13: The altan of a coronoid is no longer a coronoid.

In the case of a coronoid, the same proof works for the outer perimeter. For an inner
perimeter, one can observe that it must contain at least one (3, 3)-edge which corresponds
to a (2, 2)-edge in its corona hole. This means that there are at least two vertices of degree
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3 between some pair of degree-2 vertices. This give rise to a heptagon or an even larger
face (see Figure 7.13(b)).

However, Gutman has shown [100] that when the altan operation is performed on a convex
benzenoid [47], degrees of the newly obtained faces are limited to 5 and 6. Traditionally,
a patch is defined as a subcubic plane graph that has all its degree-2 vertices on its outer
perimeter. Clearly, the skeleton G(P) of a patch P is such a graph. The following result
shows that our definition actually coincides with the traditional one:

Proposition 7.16. Let G be a plane 2-connected subcubic graph with all the degree-2 ver-
tices on its outer perimeter. Then there exists a plane cubic graph G̃, such that G ⊆ G̃, all
inner faces of G are also faces of G̃ and there exists a patch P ⊆ F

G̃
such that G = G(P).

Moreover, if G has at least two degree-2 vertices then there exists a 2-connected graph G̃.

Proof. If G contains three or more degree-2 vertices, choose C to be the outer perimeter
of G and make altan A(G,C). Then remove all the newly obtained degree-2 vertices and
reconnect its neighbours (reverse operation to subdivision) as shown in Figure 7.14. It is

Figure 7.14: Obtaining G̃ from G with three or more degree-2 vertices.

trivial to verify that this graph is indeed the desired G̃. If G was 2-connected then its
ear-decomposition can easily be extended to include the newly obtained edges. This shows
that G̃ is also 2-connected.

If G had only two degree-2 vertices, then the above procedure would yield a multigraph.
It can be fixed by subdiving its edges on the new outer perimeter to obtain 3 or more
degree-2 vertices and repeating this operation as shown in Figure 7.15. Again, it is not

Figure 7.15: Obtaining G̃ from G with two degree-2 vertices.

hard to see that this yields the desired G̃ and that the ear-decomposition of G can be
extended to G̃.
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Figure 7.16: A “cherry”.

If G has only one degree-2 vertex, there is no hope of obtaining 2-connected G̃. Graph
G̃ can be obtain from G by attaching a “cherry” (see Figure 7.16) to its degree 2 vertex.

We can say more:

Proposition 7.17. Let G be a 2-connected plane subcubic bipartite graph with all degree-2
vertices on its outer perimeter. Then there exists a plane cubic bipartite graph G̃, such
that G ⊆ G̃, all faces of G are also faces of G̃ and there exists a patch P ⊆ F

G̃
such that

G = G(P). Moreover, there exists a 2-connected graph G̃ with desired properties.

Proof. Suppose there are at least two degree-2 vertices of the same colour, i.e., belong to
the same set of the bipartition, in graph G and denote those two vertices by u and v.
Without loss of generality, we can assume they are coloured black. Those two vertices
can be choosen in such way that there are no other black vertices between them when we
traverse the perimeter from u to v in the clockwise direction (see Figure 7.17(a)). However,

v

u

(a)

v u

(b)

Figure 7.17: A step in obtaining bipartite G̃ from bipartite G.

there may be 0 or more white vertices on that path. Say there are one or more white
vertices. Label those vertices w1, w2, . . . , wl, where l ≥ 1. Make an altan of G with vertices
(u,w1, . . . , wl, v) as its peripheral root. Label the newly obtained neighbours of vertices
u and v with u′ and v′, respectively. Then make a reverse subdivision operation which
removes all degree-2 vertices in the neighbourhood of u′ and v′. Also, remove the edge u′v′
to obtain the graph in Figure 7.17(a). If there are no white vertices between u and v, add
a new vertex to the graph and connect it to u and v as shown in Figure 7.17(b). In both
cases, this graph is clearly bipartite and 2-connected if the graph G was 2-connected. Also,
two black degree-2 vertices and l white degree-2 vertices have disappered and l + 1 new
white degree-2 vertices have emerged. The total number of degree-2 vertices is therefore
decreased by one.

This procedure terminates when there are only two vertices left, which have to be of
different colours. (The situation with only one degree-2 vertex, say a white vertex, cannot
occur. The number of edges should be divisible by 3, because every black vertex has degree
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3. On the other hand, there is one white vertex of degree 2 and the rest have degree 3,
which implies that the number of edges is congruent 2 modulo 3, a contradiction.) If those

non-adjacent

(a) (b)

Figure 7.18: The final step in obtaining bipartite G̃ from bipartite G.

final two vertices (which have to be of different colour) are non-adjacent, connect them by
an edge as shown in Figure 7.18(a). If they are adjacent, we would create a multigraph. In
that case, use the construction shown in Figure 7.18(b) to avoid the multigraph.

A perforated patch with pentagonal and hexagonal faces is called a perforated fullerene
patch. Similary, a patch with pentagonal and hexagonal faces is called a fullerene patch.
One should be aware that the restriction to hexagonal and pentagonal faces applies within
the patch P ; other faces of the cubic graph G from which the patch was derived may be of
other sizes. If such a graph G with exclusively pentagonal and hexagonal faces exists, then
the patch (or perforated patch) can be extended to a fullerene. It is not easy to verify the
existence of such G.

Example 7.8. Figure 7.19 shows that various possibilities can occur when we apply the
altan operation to a fullerene patch. In the first case (left-hand side of Figure 7.19), the
altan contains a 7-gon. In the second case (right-hand side), the altan is again a fullerene
patch (which may or may not extend to a fullerene).

(a) (b)

Figure 7.19: Altans of fullerene patches.

There is another viewpoint we can take when dealing with (perforated) patches. In addition
to the skeleton G(P), one can also obtain a planar pre-graph, denoted P (P). It can be



7.5. GENERALISED ALTANS AND ITERATED ALTANS 185

obtained from the plane graph G by removing all vertices that are not incident to any face
of P , together with all semiedges that are incident to removed vertices. In addition, edges
incident to two faces from P{ are also removed and replaced with two half edges (as if the
edge was cut in the middle). An example is given in Figure 7.20.

Figure 7.20: A pre-graph of a patch. Half edges are “without vertices” on one end, i.e.,
they are “dangling”.

Theorem 7.18. The generalised altan of a perforated patch P is a perforated patch. More-
over, if G(P) is 2-connected then G(An(P)) is also 2-connected.
Proof. The pre-graph of a perforated patch P is schematically illustrated in Figure 7.21.
Each hole corresponds to a void space that can be filled with an open disc. There are
also half edges (attached to degree-2 vertices of G(P)) which are drawn inside those holes.
When we perform an altan operation on that perforated patch, a cycle is drawn inside every

Figure 7.21: Pre-graph of a perforated patch.

hole on which the altan operation is performed and an annulus of new faces (bounded by
the new and the old perimeter) is added to the patch. See Figure 7.22 for an illustration.
New holes have the same number of half edges as they had before the operation. The parts
that were removed from G can be reattached to form the plane cubic graph.

It is clear that G(An(P)) is 2-connected if G(P) is 2-connected. The ear decomposition
of G(P) can easily be extended to include the newly obtained edges.

The following corollary obviously follows from Theorem 7.18:
Corollary 7.19. The generalised altan of a patch P is a patch. Moreover, if G(P) is
2-connected then G(An(P)) is also 2-connected.
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Figure 7.22: Pre-graph of an altan of a perforated patch.

7.6 Kekulé structures and Pauling Bond Orders
It is not hard to see that iteration of the generalised altan operation on coronoids and
perforated patches grows tubes on each perimeter, i.e., we can visualize an embedded ver-
sion in a way that is reminiscent of the classic ruled surface of the graph in which some
central planar perforated patch has tubular towers growing out of it (in either up or down
directions). See Figure 7.24.

C3

C1 C2 An

n3

n1 n2

Figure 7.23: Pants resulting from a disk with two holes by applying iterated altan operation.
If the disk hasK Kekulé structures then the pants haveK ′ = 2n1+n2+n3K Kekulé structures.

The binary boundary code for benzenoids is described in [170]. (This code is also known
as PC-1 [110].) The binary boundary code of a benzenoid is a sequence of degrees of
consecutive vertices alongs its perimeter. Cyclic shifts and reversal of the sequence are
considered as equivalent codes. Traditionally, ones and zeroes were used, but we will use
3s and 2s instead. To each perimeter Ci of an admissible structure (G;C1, . . . , Ck) we will
assign a binary boundary code, denoted BBC (Ci). Boundary-edges codes for benzenoids,
introduced in [107], are useful on many occasions [125], but in this case binary boundary
codes are more natural.

Example 7.9. The first coronoid in Figure 5.12 has three perimeters. Let C∞ denote the
outer perimeter and C1 and C2 the inner perimeters. Then

BBC (C∞) = 323222332322332223232232323223232232
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and
BBC (C1) = BBC (C2) = 3333233332.

We will use 3k as a short form of 33 . . . 3︸ ︷︷ ︸
k

. In this convention,

BBC (C1) = 342342 = (342)2.

Theorem 7.20. Let G be a coronoid and let BBC(C) = 23 `123 `22 . . . 23 `d, where li ≥ 0
for i = 1, . . . , d, be the binary boundary code for one of its perimeters C. The degree of the
i-th newly obtained face, 1 ≤ i ≤ d, is `i + 5. Moreover, the binary boundary code of the
new boundary is (32)d.

Theorem 7.21. Let G be a perforated patch with K Kekulé structures and let G′ = An(G)
be any of its generalised altans. Then the number of Kekulé structures in G′ is given by
K ′ = 2|n|K, where |n| = n1 + n2 + · · ·+ nk. Furthermore:

(a) No spoke belongs to a Kekulé structure.

(b) If ni > 0, all edges on the new perimeter belong to the same number, K′

2 , of Kekulé
structures.

The following corollary follows straightforwardly from the above theorem:

Corollary 7.22. A generalised altan An(G) is Kekulean if and only if G is Kekulean. �

Corollary 7.23. Let G be a perforated patch and let G′ = An(G) be any of its generalised
altans. The Pauling Bond Order of the newly obtained edge e is:

(a) 0 if e is a spoke,

(b) 1
2 if e is not a spoke.

Pauling Bond Orders of the edges that belong to the original graph G remain the same. �

Note that graph An(G) was obtained from G by adding new vertices and edges. Therefore,
G is a subgraph of An(G) in a natural way.

Generalised altans are models of carbon nanostructures that are constructed by attach-
ment of carbon towers [131, 182] to the holes in coronoid patches. Kekulé structures and
Pauling Bond Orders (and by implication ring currents [72, 82, 176]) of the nanostructure
can be derived in terms of those of the undecorated structure.
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Figure 7.24: Iteration of the altan construction leads to a carbon nanostructure in which
nanotubes grow out of the original holes of the coronoid. A given tube may grow up or
down, as a ‘chimney-stack’ or a ‘mine-shaft’ on the graphene-like landscape, leading to
isomeric structures that share a common molecular graph.



Chapter 8

Conclusions

Chemical graph theory is one amongst the most applied areas within graph theory. It
began in the 19th century with enumeration of alkanes, i.e., enumeration of non-isomorphic
trees with bounded degree. After the rise of quantum mechanics in the first half of the 20th
century, the Hückel Molecular-Orbital theory played an important role. In the second half of
the 20th century, the study of topological indices gained on popularity. Topological indices
(in graph theory they are often referred to as graph invariants) are molecular descriptors
based on the molecular graph of a compound under investigation. They made it possible to
obtain good estimates of molecules’ properties “in silico”, i.e., by computer searches within
certain families of graphs. Experiments “in vitro” and “in vivo”, on the other hand, are
much more expensive. While we are happy to observe that our work has been noted in the
mathematical and chemical community [16, 204], there is still a lot of work that needs to
be done.

In this work, we have revisited the molecular symmetry from both mathematical and
chemical viewpoint. Chapter 3 which introduces the Hückel theory (and several other
important chemical concepts, e.g. Kekulé structures) from a mathematician’s perspective,
serves as a between mathematics and chemistry.

In Section 3.5 we have touched the field of synthetic biochemistry by introducing mathe-
matical foundations behind the polyhedral self-assembly. We described a dynamic program-
ming algorithm for enumeration of map traces. We will work further in this area to obtain
an algorithm that will be able to enumerate exclusively parallel or exclusively antiparallel
stable traces which are of great interest to biochemists. We also plan to determine the
strong traces of fullerenes. Some day, chemistry might be able to provide large enough
sets of orthogonal peptide pairs to enable synthesis of fullerene-shaped nanostructures out
of proteins.

The Coulson conjecture on maximal bond number still remains unproved in its full gen-
erality. In Chapter 4, we gave a few partial results which may lead to the ultimate solution.
We also posed some conjectures which are also interesting from a purely mathematical
viewpoint. There are several other approaches to this that can be considered. We plan
to study how operations on graphs affect the Coulson bond number. In ideal scenario, we
hope to be able to find operations that strictly increase the maximal bond number and a
set of base graphs from which all maximal elements are obtained by iteratively using this
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operation.
Another thing that can be done is the classification and enumeration of chemical graphs

with a given number of positive eigenvalues n+. So far, we only provide the proof for the
case when n+ = 1.

In the paper [43], Coulson provides alternative formulae for the Coulson π bond order.
Let ∆(ε) denote the secular determinant, i.e., ∆(ε) = det(H− εIn,n). Let m be the index
of the highest bonding molecular orbital and assume that all bonding molecular orbitals
are doubly occupied. Then

P π
rs = 2(−1)r+s+1

m∑
j=1

∆r,s(εj)
∆′(εj)

, (8.1)

where ∆r,s(ε) is the determinant obtained from ∆(ε) by striking out the r-th row and s-th
column; ∆′(εj) denotes ∂∆(ε)

∂ε
evaluated at εj. Another formula provided by Coulson is

P π
rs = − 1

2π

∫ ∞
−∞

∂

∂βrs
log ∆(iy) dy = (−1)r+s+1 1

π

∫ ∞
−∞

∆r,s(iy)
∆(iy) dy. (8.2)

We will attempt to derive an analytical proof of this conjecture. Moreover, our current
algorithms that calculate the Coulson bond number of families of graphs can easily be
parallelized. We could extend the lists even further by the use of grid computers.

The most important contributions reside in Chapters 5, 6 and 7. New foundations have
been laid in the theory of benzenoids and their generalisations (i.e., coronoids, patches and
perforated patches). The family of convex benzenoids was studied in great detail. We plan
to study the properties of pseudo-convex benzenoids to the same extent in the near future.

The altan operation, which comes from chemistry, was given graph-theoretical foun-
dations and was further generalised and then applied back to chemistry. Note that in a
recent paper by Fowler and Myrvold [73] it is shown that the ring currents in boundary
hexagonal rings of Kekulean benzenoids, as estimated within the conjugated-circuit model,
can be calculated directly from the Pauling bond orders of boundary edges and the Kekulé
number of the benzenoid. In this work, the ground work has been layed for determining
the π electron currents on chimney-stack graphene-like structures that we obtained by the
altan operation.

A small original contribution is the introduction of the Pentagonal Incidence Partition
(abbreviated as PIP) of fullerenes. The notion of a PIP fullerene can be further refined.
Assume that the PIP(F) of a fullerene F has a part 4. This can be realised with different
pentagonal patches. We plan to refine the notion yet again to distinguish between differently
shaped patches. We plan to extend the search beyond our current limit n = 100 vertices and
classify those partitions into admissible and non-admissible. We also investigate whether
for a given PIP there exist infinite families of fullerenes that realise them or only a few
small sporadic cases.

During our study, a lot of computer code emerged. We plan to refactor and fully
document the code and, eventually, make it publicly available in the form of a library that
will be called ChemVEGA.
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Appendix A

Fullerenes and the Pentagonal
Incidence Partition

This appendix provides detailed lists and pictures of fullerenes with a certain Pentagonal
Incidence Partition.

Fullerenes F where one part of PIP(F) is strictly greater
than 6
The table below lists all fullerenes F where at least one part of the partition PIP(F) is
strictly greater than 6. They are listed by PIP(F). Within each group, they are further
divided with respect to their symmetry group. The third column in the table shows the
total number of fullerenes with a prescribed PIP and symmetry group (the bold number is
the cumulative over all groups). They are listed in the fourth column where the notation
n:m means that it is the m-th fullerene which is output by the fullgen program when all
fullerenes on n vertices are generated. (Note that the notation n:m used here is note the
same as the spiral notation.)

PIP Group Count List of fullerenes
12 C1 41 6 36:7, 38:3, 38:4, 38:5, 40:16, 42:18

C2 18 32:1, 32:5, 34:3, 34:4, 34:6, 36:6, 36:9, 36:13, 38:7,
40:15, 40:17, 40:35, 40:38, 42:16, 42:19, 44:34, 44:63,
46:93

Cs 1 34:2
D2 3 28:2, 36:5, 44:36
C2v 3 30:2, 30:3, 38:12
D3 1 32:3
C3v 1 34:5

Continues on the next page . . .
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Cont’d . . .
D2d 1 36:11
D3h 2 26:1, 32:2
D3d 1 44:37
D6d 2 24:1, 48:146
Td 1 28:1
Ih 1 20:1

11 + 1 Cs 2 2 40:21, 42:17
10 + 2 C2v 1 1 40:14
10 + 1 + 1 D5d 1 1 40:19
9 + 3 Cs 2 1 44:76

C3v 1 38:6
8 + 4 C2v 16 1 36:8

C1 6 38:9, 42:20, 42:35, 46:38, 48:34, 48:153
C2 7 40:23, 40:32, 44:74, 48:33, 48:114, 48:154, 52:370
Cs 2 46:35, 46:39

7 + 5 C1 69 52 36:2, 38:2, 38:13, 38:14, 40:6, 40:20, 40:28, 40:29,
42:15, 42:23, 42:25, 42:26, 42:32, 42:34, 42:37, 44:46,
44:47, 44:48, 44:82, 44:84, 44:86, 46:75, 46:85, 46:98,
46:99, 46:109, 46:112, 48:37, 48:38, 48:126, 48:180,
50:31, 50:32, 50:34, 50:35, 50:142, 50:146, 50:265,
50:269, 52:31, 52:32, 52:313, 52:314, 52:427, 54:32,
54:33, 54:406, 56:660, 56:856, 58:35, 58:36, 60:1260

Cs 17 34:1, 36:3, 36:10, 40:31, 40:33, 40:39, 42:24, 44:65,
44:68, 46:96, 48:137, 50:165, 54:402, 54:536, 58:1089,
60:1641, 64:3068

7 + 4 + 1 C1 12 8 44:31, 46:19, 46:33, 46:34, 46:36, 48:108, 50:206,
52:302

Cs 4 44:25, 44:30, 46:20, 54:537
7 + 3 + 2 Cs 1 1 48:120

Pictures of all fullerenes from the above table are shown below. They are ordered by the
PIP. Fullerenes F for each given PIP are listed by increasing number of vertices. Below
every picture the following information is listed:
(a) n – the number of vertices;
(b) id – the place in which this fullerene appears when all fullerenes on n vertices are

generated by the fullgen program;
(c) point group.
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The 41 fullerenes F with PIP(F) = 12

(1) (2) (3)

20, 1, Ih 24, 1,D6d 26, 1,D3h

(4) (5) (6)

28, 1,Td 28, 2,D2 30, 2,C2v

(7) (8) (9)

30, 3,C2v 32, 1,C2 32, 2,D3h

(10) (11) (12)

32, 3,D3 32, 5,C2 34, 2,Cs



210APPENDIX A. FULLERENES AND THE PENTAGONAL INCIDENCE PARTITION

(13) (14) (15)

34, 3,C2 34, 4,C2 34, 5,C3v

(16) (17) (18)

34, 6,C2 36, 5,D2 36, 6,C2

(19) (20) (21)

36, 7,C1 36, 9,C2 36, 11,D2d

(22) (23) (24)

36, 13,C2 38, 3,C1 38, 4,C1
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(25) (26) (27)

38, 5,C1 38, 7,C2 38, 12,C2v

(28) (29) (30)

40, 15,C2 40, 16,C1 40, 17,C2

(31) (32) (33)

40, 35,C2 40, 38,C2 42, 16,C2

(34) (35) (36)

42, 18,C1 42, 19,C2 44, 34,C2
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(37) (38) (39)

44, 36,D2 44, 37,D3d 44, 63,C2

(40) (41)

46, 93,C2 48, 146,D6d

The 2 fullerenes F with PIP(F) = 11 + 1

(1) (2)

40, 21,Cs 42, 17,Cs
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The fullerene F with PIP(F) = 10 + 2

(1)

40, 14,C2v

The fullerene F with PIP(F) = 10 + 1 + 1

(1)

40, 19,D5d

The 2 fullerenes F with PIP(F) = 9 + 3

(1) (2)

38, 6,C3v 44, 76,Cs
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The 16 fullerenes F with PIP(F) = 8 + 4

(1) (2) (3)

36, 8,C2v 38, 9,C1 40, 23,C2

(4) (5) (6)

40, 32,C2 42, 20,C1 42, 35,C1

(7) (8) (9)

44, 74,C2 46, 35,Cs 46, 38,C1
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(10) (11) (12)

46, 39,Cs 48, 33,C2 48, 34,C1

(13) (14) (15)

48, 114,C2 48, 153,C1 48, 154,C2

(16)

52, 370,C2
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The 69 fullerenes F with PIP(F) = 7 + 5
(1) (2) (3)

34, 1,Cs 36, 2,C1 36, 3,Cs

(4) (5) (6)

36, 10,Cs 38, 2,C1 38, 13,C1

(7) (8) (9)

38, 14,C1 40, 6,C1 40, 20,C1

(10) (11) (12)

40, 28,C1 40, 29,C1 40, 31,Cs
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(13) (14) (15)

40, 33,Cs 40, 39,Cs 42, 15,C1

(16) (17) (18)

42, 23,C1 42, 24,Cs 42, 25,C1

(19) (20) (21)

42, 26,C1 42, 32,C1 42, 34,C1
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(22) (23) (24)

42, 37,C1 44, 46,C1 44, 47,C1

(25) (26) (27)

44, 48,C1 44, 65,Cs 44, 68,Cs

(28) (29) (30)

44, 82,C1 44, 84,C1 44, 86,C1
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(31) (32) (33)

46, 75,C1 46, 85,C1 46, 96,Cs

(34) (35) (36)

46, 98,C1 46, 99,C1 46, 109,C1

(37) (38) (39)

46, 112,C1 48, 37,C1 48, 38,C1
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(40) (41) (42)

48, 126,C1 48, 137,Cs 48, 180,C1

(43) (44) (45)

50, 31,C1 50, 32,C1 50, 34,C1

(46) (47) (48)

50, 35,C1 50, 142,C1 50, 146,C1
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(49) (50) (51)

50, 165,Cs 50, 265,C1 50, 269,C1

(52) (53) (54)

52, 31,C1 52, 32,C1 52, 313,C1

(55) (56) (57)

52, 314,C1 52, 427,C1 54, 32,C1
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(58) (59) (60)

54, 33,C1 54, 402,Cs 54, 406,C1

(61) (62) (63)

54, 536,Cs 56, 660,C1 56, 856,C1

(64) (65) (66)

58, 35,C1 58, 36,C1 58, 1089,Cs
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(67) (68) (69)

60, 1260,C1 60, 1641,Cs 64, 3068,Cs

The 12 fullerenes F with PIP(F) = 7 + 4 + 1

(1) (2) (3)

44, 25,Cs 44, 30,Cs 44, 31,C1

(4) (5) (6)

46, 19,C1 46, 20,Cs 46, 33,C1
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(7) (8) (9)

46, 34,C1 46, 36,C1 48, 108,C1

(10) (11) (12)

50, 206,C1 52, 302,C1 54, 537,Cs

The fullerene F with PIP(F) = 7 + 3 + 2
(1)

48, 120,Cs
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The Coulson Conjecture

B.1 Benzenoids
Pictures of all benzenoids from Table 4.7 are shown here. Each figure contains four items:
(a) the number in paranthesis is the number of vertices;
(b) the next number is the boundary-edges code;
(c) below the boundary-edges code is the picture of the benzenoid (centres that attain

the maximum bond number are coloured blue);
(d) the last number is the maxrNr for the benzenoid.

Benzenoids that attain the maximal bond number
(6) (10) (13) (14) (16)
6 55 444 5252 4343

1.33333333 1.62763379 1.63054753 1.62631158 1.62132013

(17) (18) (19)
52441 532521 43342

1.63220884 1.62715855 1.63164451
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(20) (21) (22)
523431 5241521 424242

1.63130593 1.63182435 1.63238336

(23) (24) (25)
5142431 44224411 4323422

1.63206671 1.63672514 1.63252587

(26) (27) (28)
52242421 442234311 5211442241

1.63273787 1.63584712 1.63635309
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(29) (30)
514224321 4422243311

1.63223591 1.63620345

(31) (32)
52311442231 532114422411

1.63575386 1.63644271

Benzenoids that minimize the maximum bond number
(6) (10) (13) (14) (16)
6 55 444 5351 4343

1.33333333 1.62763379 1.63054753 1.62334845 1.62132013

(17) (18) (19)
52441 515151 43342

1.63220884 1.59242502 1.63164451
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(20) (21) (22)
514341 5314421 53215321

1.62228423 1.63060923 1.62191039

(23) (24) (25)
4413431 51415141 521521521

1.63032477 1.59253929 1.62993398

(26) (27) (28)
5151151511 521513421 51333331

1.59980247 1.62969256 1.61604295
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(29) (30)
53141351221 515121515121

1.62602800 1.59179608

(31) (32)
433233411 515114151411

1.62362874 1.59969316

B.2 Fullerenes

Pictures of all fullerenes from Tables 4.5 and 4.6 are shown here. The notation used here
is the same as in Appendix A.

Fullerenes that minimize the maximum bond order

(1) (2) (3)

20, 1, Ih 24, 1,D6d 26, 1,D3h
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(4) (5) (6)

28, 1,Td 30, 1,D5h 32, 4,D3d

(7) (8) (9)

34, 1,Cs 36, 1,D6h 38, 8,C2

(10) (11) (12)

40, 34,Td 42, 39,D3 44, 52,D3h

(13) (14)

46, 44,C2 48, 1,D6d
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(15) (16)

50, 105,D5h 52, 140,C2

(17) (18)

54, 30,C2v 56, 311,D3

(19) (20)

58, 794,C1 60, 936, Ih
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(21) (22)

62, 1612,D3h 64, 150,Cs

(23) (24)

66, 56,C2v 68, 4656,D3

(25) (26)

70, 1,D5h 72, 1,D6d
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(27) (28)

74, 9249,D3h 76, 7956,D2d

(29) (30)

78, 1992,D3h 80, 18087,D5d
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(31) (32)

82, 36884,C2 84, 1,D6h

(33) (34)

86, 40357,D3h 88, 50148,C2v
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(35) (36)

90, 54468,D5h 92, 43314,D3

(37) (38)

94, 75372,C1 96, 1,D6d
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(39) (40)

98, 142141,D3h 100, 1,D5d

Fullerenes that obtain the maximum bond order

(1) (2) (3)

20, 1, Ih 24, 1,D6d 26, 1,D3h

(4) (5) (6)

28, 2,D2 30, 2,C2v 32, 2,D3h
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(7) (8) (9)

34, 5,C3v 36, 7,C1 38, 12,C2v

(10) (11) (12)

40, 31,Cs 42, 21,C1 44, 1,C2v

(13) (14)

46, 50,Cs 48, 137,Cs
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(15) (16)

50, 55,C3v 52, 128,C1

(17) (18)

54, 194,C1 56, 293,Cs

(19) (20)

58, 255,C1 60, 359,Cs
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(21) (22)

62, 493,C1 64, 1481,Cs

(23) (24)

66, 3652,C1 68, 1959,C1

(25) (26)

70, 4087,Cs 72, 5633,C1
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(27) (28)

74, 5814,D3h 76, 9132,Td

(29) (30)

78, 10288,Cs 80, 11391,C3v

(31) (32)

82, 13243,C1 84, 14510,C1



B.2. FULLERENES 241

(33) (34)

86, 15156,C1 88, 14729,C1

(35) (36)

90, 16030,C1 92, 16163,C1
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(37) (38)

94, 47431,Cs 96, 126731,Cs

(39) (40)

98, 101379,C1 100, 186008,C1
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Symbols
K5, 10
K3,3, 10
S1, 9
[n]annulene, see annulene
α, β-notation, 44
R2, 10
R3, 9

A
achiral, 25
adjacent faces, 10
adjacent vertices, 6
Albertazzi, 59
allotrope, 57
amino acid, 82

standard, 82
ammonia, 25
anion, 35
annulene, 54
anthracene, 66
antisymmetry, 41
arc, 7

properly oriented, 71
aromatic compound, 53
aromatic sextet, 53
ascorbic acid, 16
atom

starred, 55
unstarred, 55

atomic number, 35, 40
Aufbau Principle, 47
automorphism, 7
Avogadro, 25

B
Babić, 27
Balaban, 15, 17

barycentric subdivision, 14
basis, 41
benzene, 53, 54
benzenoid, 15

catacondensed, 17
non-branched, 17

benzenoid system, 17
bipartite, 29
bipartition, 8
bond

covalent, 35
ionic, 35

bond number, 66
boric acid, 25
Born-Oppenheimer approximation, 40
boron trifluoride, 25
boundary of a face, 10
boundary of a polygon, 12
Brin, 32
Brinkmann, 15, 63
Brouwer, 27
Buckminsterfullerene, 58
buckyball, see Buckminsterfullerene, 60
buckygen, 63
butadiene, 45, 52

C
C (programming language), 9
CaGe, 63
carbon, 37
carbon dioxide, 21, 25
caterpillar, 8
cation, 35
2-cell, 13
central inversion, 19
centroid, 19
charge density, 50
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chiral, 25
chirality, 25
CHNOPS, 37
Clar, 17
Classification of Surfaces, 14
2-colouring of a graph, 55
conjugacy class, 22
conjugated π system, 17, 41
connected, 29
connected sum, 13
connectivity, 7
cospectral graphs, 27
Coulomb attraction, 40
Coulomb integral, 44
Coulson bond number, see π bond number
Coulson π bond order, see total π bond order
Coulson-Rushbrooke Theorem, 55
cube, 12, 23
Curl, 58
curve, 9

closed, 9
simple, 9

Cvetković, 27
cycle, 6

F -alternating, 69
evenly oriented, 70
nice, 69
oddly oriented, 70

cyclobutadiene, 54
cycloheptatrienyl cation, 54
cycloheptatrienyl radical, 54
cyclooctatetraene, 54
cyclopentadienyl anion, 54
cyclopentadienyl radical, 54
cyclopropenyl cation, 54
cyclopropenyl radical, 54

D
dart, 5
de Moivre’s formula, 30
defect of a matching, 72
degree

average, 6
maximum, 6
minimum, 6

degree of a face, 10
degree of a vertex, 5
delocalisation energy, 49
determinant, 19, 67
diagonal of a matrix, 29
diameter of a graph, 7, 29
diamond, 57
digraph, 7

Pfaffian, 69
dimer

anti-parallel, 83
coiled coil, 82
parallel, 83

directed cycle, 30
distance, 7
dodecahedron, 24, 59
DOMO, 48
Doob, 27
double trace, 86
Down, 63
Dress, 15, 63

E
edge, 5

directed, 7
half, 5
parallel, 5
proper, 5

edge contraction, 7
Edmonds’ matching algorithm, 66
eigenfunction, 41
eigenvalue, 27, 44

degenerate, 27, 28
non-degenerate, 32, 46

eigenvector, 28, 44
kernel, 32
Perron-Frobenius, 32

electron, 35
core, 36
valence, 36

electron configuration, 35, 47
closed shell, 48
ground state, 47
meta closed shell, 48
open shell, 48
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properly closed shell, 48
pseudo closed shell, 48

embed, 63
embedding

cellular, 10, 13
combinatorially equivalent, 11
topologically equivalent, 11

embedding of a graph, 9
enantiomer, 25
end vertex, 5
ethane, 25, 39
ethanol, 16
ethene, 38, 49
ethylene, see ethene
ethyne, 39
Euler characteristic, 10
Euler’s Formula, 10
Euler’s formula, 58
Eulerian circuit, 86
Eulerian multigraph, 86

F
face, 10, 13

inner, 10
outer, 10

1-factor, 64
fasciagraph, 26
Fijavž, 86
flag, 14
flag-simple

map, 15
(s, t)-flow, 65
n-fold axis, 20
force field optimisation, 63
Ford-Fulkerson method, 66
forest, 8, 73
Fowler, 62, 63
free valence, 53
Frost-Musulin circle, 30
Fullerene, 63
fullerene, 10
fullerene hypothesis, 58
fullerenes, 57
fullgen, 63

G
Gaussian elimination, 67
geng, 9
girth, 7
glueing mapping, 84
glueing process, 83
glueing sequence, 84
Goedgebeur, 63
Goldberg, 66
Graovac, 27
graph, 5

3-connected, 58
acyclic, 7
benzenoid, 17
bipartite, 7
bouquet, 85
characteristic, 17
chemical, 16
Clar, 17
complete, 7, 30
complete bipartite, 8, 30
complete molecular, 16
complete multipartite, 8
connected, 7
k-connected, 7
coronoid, 8
cubic, 6
cycle, 7, 30
depleted, 16
directed, 7, 29
disconnected, 7
dualist, 17
edge-coloured, 15
edge-weighted, 17
empty, 7
flag, 15
fullerene, 58
Hückel, 16
hydrogen-depleted, 17
Kekulean, 65
molecular, 16
nonplanar, 10
nut, 33
path, 7, 8, 30
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Pfaffian, 69
planar, 10
plane, 10
regular, 6
k-regular, 6, 29
simple, 5
singular, 32
skeleton, 16, 45
star, 8
subcubic, 6
totally disconnected, 9
vertex-weighted, 17

graph energy, 49
graph invariant, 27
graph isomorphism, 7
graphene, 57
graphite, 57
group, 7

abelian, 22
automorphism, 7
cyclic, 22
dihedral, 22
full automorphism, 7, 63
permutation, 17
point, 19
special orthogonal, 19
symmetry, 19

gtools, 9
Gutman, 17, 74

H
Hückel “4p+ 2” rule of aromaticity, 53
Hückel approximations, 45
Hückel graph, 45
Hückel molecular-orbital theory, 40
Haemers, 27
handshaking lemma, 5
Hartree-Fock Limit, 41
Heath, 58
heterodimer, 83
HOMO, 48
HOMO-LUMO gap, 48, 54
homodimer, 83
Hund’s Rule, 47
hybridisation, 38

hydrocarbon, 37
alternant, 51, 55
conjugated, 45
non-alternant, 55

hydrogen, 37
hydrogen cyanide, 21, 25
hydrogen sulfide, 37

I
icosahedron, 24

truncated, 60
identity, 20
improper axis, 20
improper rotation, 20
inertia of a graph, 33
inertia of a matrix, 33
infinite hexagonal lattice, 57
initial vertex, 5
Interlacing eigenvalues, 31
inversion, 20
involution

fixed-point-free, 14
ion, 35
IPR fullerene, 60, 63
Isolated Pentagon Rule, see IPR fullerene
isomer, 45
isometry, 18

orientation-reversing, 25
isomorphic graphs, 7

J
Jahn-Teller effect, 61
Jahn-Teller theorem, 54
Jordan Curve Theorem, 9

K
König, 8
Kasteleyn’s Theorem, 71
Kekulé, 53
Kekulé number, 65
Kekulé structure, 64
Klavžar, 27, 86
Klein bottle, 13
Korte, 66
Kronecker δ notation, 44, 56
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Kroto, 58

L
Laplacian, 40
LCAO, 41
LCAO coefficients, 47
leaf, 8
line, 9
linear molecules, 21
lone pair, 37
loop, 5
Lovász, 64
LU decomposition, 67
LUMO, 48

M
Mani, 63
Mani’s Theorem, 63
Manolopoulos, 62, 63
map, 14
mass spectrum, 58
matching, 64

maximum, 65
perfect, 64

matching number, 65
matrix

adjacency, 27
biadjacency, 29, 67
Hückel Hamiltonian, 44, 45
Hermitian, 44
orthogonal, 19
real, 29
skew adjacency, 69
skew symmetric, 68
symmetric, 29
variable biadjacency, 68
variable skew adjacency, 68

May, 63
McKay, 9, 63
methane, 18, 37
Milun, 74
MO coefficients, 47
Mohar, 27, 74
molecular orbital diagram, 46
molecular plane, 20

molecule
asymmetric, 22

monograph, 26
monomer, 26
Mowshowitz, 73
Myrvold, 63

N
naphthalene, 17, 64
nauty, 9
neighbourhood, 6
network, 17
neutron, 35
nitrogen, 37
nodal plane, 62
NP-hard, 66, 67
nucleus, 35
nullity, 32
nullspace, 32

O
O’Brien, 58
octahedron, 12, 23
of a map

1-skeleton, 15
operator

effective Hamiltonian, 41
electronic Hamiltonian, 41
Hamiltonian, 40
kinetic-energy, 40
Laplace, see Laplacian
potential-energy, 40
self-adjoint, 42

orbit, 14, 84
orbital

anti-bonding, 46
atomic, 35, 41
bonding, 46
degenerate, 36
hybridised, 38
molecular, 41
non-bonding, 46

orbital diagram, 37
orbital energy, 42, 44
order, 5
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orientability, 14
orientation of a graph, 68
orthogonal group, 19
orthogonal peptide pairs, 82
oxygen, 37

P
p orbital, 35
Page, 32
Pairing Theorem, see Coulson-Rushbrooke The-

orem
part of a partition, 59
partial π bond order, 51
partial π charge, 50
partial valence, 52
particle in a box, 49
partition, 59
path, 6
path algebra, 27
Pauli Exclusion-Principle, 47
Pauling, 66
Pentagonal Incidence Partition, 59
pentalene, 56
peptide, 82
periodic table, 17, 18
permanent, 67
Perron-Frobenius theorem, 32, 46
Pfaffian of a matrix, 69
phenanthrene, 66
phosphorus, 37
π bond, 39
π bond number, 52
PIP, see Pentagonal Incidence Partition
Piperno, 9
Pisanski, 15, 27, 62, 86
plane dual, 12, 59
plane tiling, 13
Plummer, 64
point, 9
polygon, 12
polygonal complex, 12
polygonal surface, 12

with boundary, 13
polygraph, 26
polyhedron, 13

convex, 58
polymer, 26
polynomial

acyclic, 72
characteristic, 27, 46, 73
matching, 27, 72
matching defect, 72
matching generating, 72
sextet, 17

polypeptide, 82
pregraph, 5

flag, 15
principal axis, 22
projective plane, 13
proper axis, 20
proper rotation, 20
proton, 35
pure rotation, 19
Push-relabel algorithm, 66
pyrene, 66

Q
quantum chemistry, 40
quantum mechanics, 40
quantum number, 36

angular, 36
magnetic, 36
orbital, 36
principal, 36
spin, 36
spin projection, 36

R
Rayleigh Ratio, 42
reflection, 20
repetition, 87

N -repetition, 88
resonance energy, 49, 74

topological, 74
resonance integral, 45
resonance theory, 64
resudial affinity, see partial valence
retracing, 87
reversal involution, 5
Rohlfing, 58
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root of a tree, 9
rotagraph, 26
Rus, 86

S
s orbital, 35
Sachs, 27
Schönflies notation, 19
Schrödinger wave equation, 40
Schwerdtfeger, 57
secular determinant, 44
secular equations, 44
semiedge, 5
separating set, 7
shell, 35

valence, 36
σ bond, 39
sign of a Kekulé structure, 69
sign of permutation, 67
sink, 65
size, 5
size of a matching, 64
1-skeleton, 13
Smalley, 58
SOMO, 48
source, 65
sp orbital, 39
sp2 orbital, 38
sp3 orbital, 38
spectral graph theory, 27, 46, 57
spectrum, 27
sphere, 13
stable trace

n-stable trace, 88
starring process, 55
Steinitz’s Theorem, 58
stereographic projection, 10
strong trace, 88
subgraph, 6

induced, 6
spanning, 7

subgroup
pure rotational, 23

subshell, 36
sulfur, 37

surface, 10
nonorientable, 14
orientable, 14

symmetric minor, 31
symmetry element, 19
symmetry group

combinatorial, 60
geometrical, 61
ideal, 61
physical, 61
topological, 60

symmetry operation, 18

T
Tarjan, 66
tet12, 82
tetrabenzoheptacene, 66
tetrahedron, 23, 82
thalidomide, 25
The Spiral Conjecture, 63
Thomassen, 9
topological index, 27
topological invariant, 11
topological surface, 13
torus, 13
total bond number, 52
total bond order, 51
total π bond order, 51
total π charge, 50
total π electron energy, 48
trace of a matrix, 29
Traces, 9
tree, 8

chemical, 17
Gutman, 17
rooted, 9, 71

triangulation, 59
Trinajstić, 74

U
unit interval, 9

V
valence bondy theory, 35
value of a flow, 65
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Variation Principle, 42
vertex, 5

core, 33
core-forbidden, 33
isolated, 6

vitamin C, 16
Vygen, 66

W
walk, 6

clockwise facial, 70
wave function, 42
web graph, 32
Whitney’s Theorem, 12, 58
Wu, 63

Z
Žerovnik, 27



Razširjeni slovenski povzetek

V zadnjem času so na področju matematične kemije nastala številna dela, ki opisujejo
uporabo matematičnih orodij pri analizi fizikalnih lastnosti in pojavov, ki so pomembni v
fizikalni kemiji in molekularni fiziki. To je vzbudilo pozornost nekaterih matematikov, še
posebej tistih, ki se ukvarjajo s teorijo grafov in uporabo linearne algebre v teoriji grafov. Po
drugi strani se je izkazalo, da so številni koncepti iz algebrajske in topološke teorije grafov
primerni za opis in analizo ogljikovodikov, kot so npr. heksagonalni sistemi in fulereni.
V tem delu obravnavamo več problemov iz matematične kemije s povsem matematičnega
vidika. Poleg tega predstavimo nekaj kemijskih konceptov preko teorije grafov. Namen tega
je vzpostavitev tesnejše povezave med matematiko in kemijo. Med molekularnimi grafi, ki
jih obravnavamo, namenimo posebno pozornost heksagonalnim sistemom.

Drugo poglavje je preliminarno. V njem vpeljemo matematične objekte, ki jih uporab-
ljamo v tem delu. Najprej spoznamo grafe. Posebno pozornost namenimo dvodelnim in
ravninskim grafom. Ogledamo si tudi mnogokotniške ploskve in zemljevide. Zemljevidi so
kombinatorični opisi celičnih vložitev grafov v ploskve. Kemijski graf je lahko načeloma vsak
graf, ki ima določeno uporabo v matematični kemiji. V ožjem pomenu besedne zveze “kemij-
ski graf” imamo običajno v mislih subkubične grafe. Nato pokažemo, kako lahko molekule
opišemo z grafi. Posebej pomembni so Hücklovi grafi, tj. grafi ogljikovodikov, kjer vodikove
atome zanemarimo. Razdelek 2.4 je posvečen točkovnim grupam. Z njimi opišemo simetrijo
molekul, pri čemer upoštevamo tudi njihovo geometrijo, tj. molekulo podamo s položaji
njenih atomov v trirazsežnem prostoru. Pri tem uporabljamo Schönfliesovo notacijo, ki je
razširjena v kemiji in kristalografiji. Zanimajo nas le tiste podgrupe grupe O(3), ki pridejo
v poštev kot grupe simetrij molekul. To so grupe D∞h, C∞v, C1, Cs, Ci, Td, T, Th, O,
Oh, I, Ih in naslednje družine:

Cn, Sn, Dn Cnh, Cnv, Dnh ter Dnd. (8.1)

Parameter n ≥ 2 je naravno število. Pri grupi Sn zahtevamo še, da je število n sodo. Med
drugim pokažemo, da ima vsaka molekula, ki vsebuje vsaj 3 nekolinearne atome, končno
grupo simetrij.

V razdelku 2.6 predstavimo nekaj ključnih rezultatov spektralne teorije grafov. Ta igra
ključno vlogo pri Hücklovi teoriji. Pri spektralni teoriji grafov študiramo lastne vrednosti
matrike sosednosti grafa. Zanima nas predvsem, kaj nam lahko lastne vrednosti povedo o
lastnostih pripadajočih grafov. Znano je na primer, da je graf dvodelen natanko tedaj, ko je
njegov spekter simetričen (glede na število 0). Za nekatere družine grafov (polne grafe, polne
dvodelne grafe, poti in cikle) izračunamo lastne vrednosti in pripadajoče lastne vektorje.
Predstavimo še izrek o prepletanju, ki nam pove, v kakšni relaciji so lastne vrednosti nekega
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grafa in njegovega induciranega podgrafa. Prav tako pomemben je Perron-Frobeniusov
izrek, ki pove, da ima vsak graf neko realno lastno vrednost, ki je po absolutni vrednosti
večja ali enaka od vseh ostalih lastnih vrednosti, njen pripadajoči lastni vektor pa ima same
nenegativne komponente.

V tretjem poglavju vpeljemo kemijske koncepte preko teorije grafov. Poglavje je namen-
jeno matematikom, ki želijo bolje razumeti kemijsko ozadje problemov, ki jih obravnavamo
v tem delu. Najprej na kratko predstavimo teorijo valenčne vezi, kjer se seznanimo s σ
in π vezjo. Razdelek 3.2 je nekoliko daljši in je posvečen Hücklovi teoriji molekulskih or-
bital. To je bržkone najpreprostejša teorija molekulskih orbital, ki je nastala na podlagi
kvantne mehanike. Omogoča izračun energij molekulskih orbital nenasičenih ogljikovodikov
oz. konjugiranih π sistemov. Začnemo s Schrödingerjevo valovno enačbo

HΨ = EΨ. (8.2)

in naredimo celo vrsto poenostavitev oz. aproksimacij. Osrednjega pomena v kvantni kemiji
je Born-Oppenheimerjeva aproksimacija. Ta pravi, da lahko atomom priredimo fiksne ko-
ordinate v prostoru, saj se v primerjavi z elektroni gibljejo zelo počasi. Molekulske orbitale
izrazimo kot linearne kombinacije atomskih orbital, tj.

φi =
n∑
r=1

c(i)
r χr, (8.3)

kjer je φi i-ta molekulska orbitala, {χr}nr=1 pa je v naprej dana baza atomskih orbital.
Ker je izraz (8.3) le aproksimacija, zelo natančnih rezultatov niti ne pričakujemo. Namen
Hücklove teorije ni, da bi zelo natančno izračunali lastnosti ene same molekule, ampak nam
omogoči predvsem, da lahko med seboj primerjamo cele družine molekul. Po daljši izpeljavi
dobimo matrično enačbo

(H− εIn×n)c = 0n×1, (8.4)
kjer je H hermitska matrika, ki ji pravimo Hücklov Hamiltonian. V enačbi (8.4) je ε energija
molekulske orbitale, elementi matrike H = [Hij]ni,j=1 pa so definirani kot integrali

Hij :=
∫
χiHχj dτ. (8.5)

Hückel je naredil še eno aproksimacijo in sicer je vse vrednosti Hii, 1 ≤ i ≤ n, postavil na α,
vrednost Hij, i 6= j, 1 ≤ i, j ≤ n pa je enaka β, če sta i-ti in j-ti atom povezana s σ vezjo,
in 0 sicer. To pomeni, da energije molekulskih orbital določimo tako, da poiščemo lastne
vrednosti matrike sosednosti Hücklovega grafa molekule. V Hücklovem grafu vsako vozlišče
predstavlja en ogljikov atom konjugiranega π sistema, povezave pa σ vezi med njimi. Če
so λ1, . . . , λn lastne vrednosti Hücklovega grafa, potem so energije molekulskih orbital

εi = α + λiβ. (8.6)

Vsaki lastni vrednosti torej pripada ena molekulska orbitala, ki lahko gosti do dva elek-
trona. Večkratnim lastnim vrednostim pripadajo tako imenovane degenerirane orbitale.
Elektroni polnijo orbitale v takem vrstnem redu, da se najprej napolnijo tiste z nižjo en-
ergijo. Pri degeneriranih orbitalah prejme vsaka po en elektron, še preden prejme katera
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od njih drugega. Če poznamo število π elektronov neke molekule, lahko zapišemo njeno
elektronsko konfiguracijo, tj. vektor števil v =

[
v1 v2 . . . vn

]
, kjer je

vi =


2, če ima orbitala φi dva elektrona;
1, če ima orbitala φi en elektron;
0, če je orbitala φi prazna.

(8.7)

Skupna energija π elektronov sistema je

Eπ =
n∑
i=1

viεi =
n∑
i=1

vi(α + λiβ). (8.8)

Definirajmo še π naboj atoma r:

Qr =
n∑
i=1

vi
(
c(i)
r

)2
, (8.9)

kjer je vi število elektronov v i-ti orbitali, c(i)
r pa r-ta komponenta i-tega lastnega vektorja.

Če sta atoma r in s povezana s σ vezjo, potem je red π vezi med njima

P π
rs =

n∑
i=1

vic
(i)
r c

(i)
s . (8.10)

Definiramo lahko še skupni red vezi P σ+π
rs = P σ

rs + P π
rs, ki poleg prispevka π vezi vključuje

še prispevek σ vezi. Red σ vezi med atomoma r in s, P σ
rs, je enak 1, če sta sosednja v

Hücklovem grafu. Številu
Nπ
r =

∑
s∈G(r)

P π
rs (8.11)

pravimo π vezno število atoma r. To je vsota vseh redov π vezi, ki dani atom r povezujejo
z ostalimi. Podobno je

Nσ+π
r =

∑
s∈G(r)

P σ+π
rs (8.12)

skupno vezno število atoma r. V Hücklovi teoriji poznamo tudi količino, ki ji pravimo
prosta valenca. Prosta valenca atoma r je

Fr = Nσ+π
max −Nσ+π

r , (8.13)

kjer je Nσ+π
max največje vezno število, ki ga je teoretično mogoče doseči. Število Fr interpre-

tiramo kot neizkoriščen potencial, ki ga ima atom r za tvorbo kemijskih vezi. V literaturi
zasledimo, da je vrednost Nσ+π

max enaka 3+
√

3, a se izkaže, da to ni bilo nikoli dokazano. Tej
domnevi pravimo Coulsonova domneva o maksimalnem veznem številu in se ji posvetimo v
4. poglavju.

Razdelek 3.3 je posvečen fulerenom. Ogljik ima mnogo alotropov, med katerimi sta
diamant in grafit znana že dolgo. Raziskovanje fulerenov se je začelo v 80. letih, ko je
Kroto s sodelavci napovedal obstoj fulerena C60, ki je znan kot buckminsterfuleren in ima
grupo simetrij ikozaedra. Po tem odkritju je postalo raziskovanje fulerenov zelo popularno,
Kroto in sodelavci pa so leta 1996 prejeli Nobelovo nagrado za kemijo. Fulerene lahko
predstavimo s konveksnimi poliedri ali pa, ekvivalentno, z grafi.
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Definicija 1. Fulerenski graf je kubičen ravninski 3-povezan graf, ki ima sama petkotniška
in šestkotniška lica.

Da sta predstavitvi z grafi in s konveksnimi poliedri zares ekvivalentni, nam pove Steinitzev
izrek, ki pravi, da je skelet vsakega konveksnega poliedra v R3 ravninski 3-povezan graf.
Tudi obratno je res, tj. vsak ravninski 3-povezan graf je skelet nekega konveksnega poliedra
v R3. Preprosta posledica Eulerjeve formule je, da ima vsak fuleren natanko 12 petkotniških
lic. Za vsako sodo število n ≥ 20, razen za n = 22, obstaja vsaj en fuleren. Poseben razred
fulerenov so tako imenovani IPR fulereni, pri katerih nobena dva petkotnika nimata skupne
povezave. V tem delu definiramo petkotniško incidenčno particijo:

Definicija 2. Petkotniška incidenčna particija fulerena F , PIP(F), je particija števila 12,
ki jo dobimo tako, da preštejemo vozlišča v vsaki povezani komponeti grafa, ki je induciran
na vozliščih stopnje 5 v ravninskem dualu fulerena F .

Z uporabo petkotniške incidenčne particije lahko definiramo IPR fulerene:

Definicija 3. Fuleren F je IPR fuleren, če je

PIP(F) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
12

. (8.14)

Izkaže se, da obstaja le 41 fulerenov F , za katere velja PIP(F) = 12. Zelo pomemben je
tudi naslednji izrek:

Izrek 1 (Mani). Naj bo G 3-povezan ravninski graf. Potem v R3 obstaja konveksen polieder
P , za katerega velja, da je graf G 1-skelet poliedra P in polieder P realizira grupo simetrij
grafa G. �

To med drugim pomeni, da fulereni nimajo “skritih simetrij” in da je njihove točkovne grupe
mogoče poiskati na kombinatoričen način. Znano je, da pride v poštev samo 28 točkovnih
grup, ki so prikazane v tabeli 3.5.

Generiranje fulerenskih grafov omogoča program fullgen, ki sta ga leta 1995 razvila
Brinkmann in Dress. Leta 2012 pa so Brinkmann, Goedgebeur in McKay razvili še hitrejši
program, ki se imenuje buckygen.

V razdelku 3.4 spoznamo Kekuléjeve strukture. To so pravzaprav strukturne formule,
pri katerih je vsak ogljikov atom povezan z natanko eno dvojno vezjo z nekim drugim
ogljikovim atomom, ostale vezi pa so enojne. Temu kemijskemu konceptu v teoriji grafov
ustrezajo popolna prirejanja. Prirejanje je podmnožica F povezav grafa G, kjer nobeni dve
povezavi iz F nista incidenčni. Če je vsako vozlišče grafa G krajišče kake povezave, potem
je prirejanje popolno. Pravimo, da je graf Kekuléjev, če ima vsaj eno popolno prirejanje.
Tega lahko poiščemo v polinomskem času. Preštevanje Kekuléjevih struktur (oz. popolnih
prirejanj) pa je v splošnem NP-težek problem. Za nekatere posebne družine grafov lahko
Kekuléjeve strukture še vedno preštejemo v polinomskem času. Kasteleynov izrek nam
pove, da so ravninski grafi (na primer fulereni in koronoidi) takšna družina.

Ob koncu poglavja si pogledamo še metodo konjugiranih tokokrogov, s pomočjo katere
lahko napovemo obroče tokove oz. tokove π elektronov. Spoznamo še Paulingov red vezi, tj.
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razmerje med številom Kekuléjevih struktur, ki vsebujejo neko dano povezavo, in številom
vseh Kekuléjevih struktur grafa.

V razdelku 3.5 obravnavamo matematični model za opis samosestavljanja poliedrov
iz verig peptidov. Leta 2013 so Gradišar in soavtorji zasnovali polipeptid tet12, ki se
uspešno samosestavi v tetraeder. Veriga vsebuje 12 peptidov in je zasnovana tako, da se
določeni pari peptidov “zlepijo skupaj”. Končni rezultat je tetraeder, ki ima 6 povezav.
Polipeptid tet12 modeliramo z usmerjeno potjo ~P13, ki ima oznake na svojih povezavah.
Vsaka povezava namreč predstavlja en peptid, oznake pa povedo, katere peptide uporabimo.
Poleg tega podamo še lepilno preslikavo, ki nam pove, kateri peptidi (povezave) se zlepijo
skupaj.

Matematični model za načrtovanje polipeptidov, ki se zložijo v želeno strukturo, sta
opisala Rus in Klavžar. Naj bo

W = w0w1w2 . . . w2m (8.15)

dvojni obhod grafa G (tj. vsako povezavo prečkamo natanko dvakrat). Izkaže se, da ima
vsak graf dvojni obhod. Če peptide izberemo tako, kot nam veleva dvojni obhod, se bo
morda polipeptid sestavil v želeni skelet poliedra. Klavžar in Rus sta poiskala dodatne
pogoje, ki jih mora izpolnjevati dvojni obhod, da se bo polipeptid gotovo sestavil v želeni
skelet. V tem primer mu pravimo stabilen obhod. Pokazala sta, da stabilni obhod grafa G
obstaja, če in samo če ima graf G minimalno stopnjo vsaj 3.

Kasneje so Fijavž, Pisanski in Rus koncept stabilnega obhoda nadgradili in definirali
krepek obhod grafa. Dokazali so, da v vsakem grafu obstaja krepek obhod.

Slike krepkih obhodov običajno rišemo tako, kot je prikazano na sliki 3.37. V tem delu
se osredotočimo na grafe, ki so vloženi v ploskve. Vložitev predstavimo z zemljevidom
in definiramo obhod zemljevida. Obhodi zemljevida so v tesnem sorodstvu s krepkimi
obhodi. Predstavljajmo si, da zemljevid razrežemo po povezavah. Tako dobimo “koščke
sestavljanke”, ki ustrezajo licem. Obhod zemljevida inducira delne obhode na svojih licih.
Izpeljali smo algoritem, ki uporablja tehniko dinamičnega programiranja za preštevanje (oz.
enumeracijo) obhodov zemljevida. Obhod zemljevida lahko sestavimo iz delnih obhodov
tako, da lica lepimo skupaj in spajamo združljive delne obhode.

V četrtem poglavju se posvetimo Coulsonovi domnevi o maksimalnem veznem številu.

Domneva 1. Za vse kemijske grafe G velja

Nπ(G) ≤
√

3. (8.16)

�

Domneva 2. Zvezda K1,3 je edini kemijski graf, ki doseže enakost v enačbi (8.16), tj.
Nπ(K1,3) =

√
3 in Nπ(G) <

√
3, če je G � K1,3 katerikoli drug kemijski graf. �

Najprej pokažemo, da je vezno število omejeno navzgor:

Trditev 2. Naj bo G Hücklov graf. Potem velja

Nπ
r ≤ 2λ1(G). (8.17)

�
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Za dvodelne grafe lahko zgornjo mejo nekoliko izboljšamo:

Trditev 3. Naj bo G dvodelen Hücklov graf. Potem velja

Nπ
r ≤ λ1(G). (8.18)

�

Uspelo nam je pokazati, da domneva velja za grafe, ki imajo natanko eno pozitivno lastno
vrednost. V dokazu smo uporabili Smithovo karakterizacijo grafov z natanko eno pozitivno
lastno vrednostjo. Z uporabo Mooreove meje in izreka o prepletanju smo pokazali:

Izrek 4. Obstaja končno mnogo (neizomorfnih) grafov, ki imajo maksimalno stopnjo ome-
jeno z danim številom ∆ in natanko n+ pozitivnih lastnih vrednosti. �

Iz tega izreka direktno sledi:

Posledica 5. Obstaja končno mnogo (neizomorfnih) kemijskih grafov, ki imajo natanko n+
pozitivnih lastnih vrednosti. �

To pomeni, da bi lahko domnevo potrdili za grafe, ki imajo n+ > 1 pozitivnih lastnih
vrednosti tako, da bi jih poiskali s pomočjo računalnika.

Za vsak n ∈ {2, 3, . . . , 20} smo poiskali graf, ki ima maksimalno π vezno število med
vsemi kemijskimi grafi na n vozliščih. Pri tem nastopata dve družini grafov:

Definicija 4. Pohabljena gosenica na n vozliščih je graf G, ki ima množico vozlišč

V (G) = {v0, v1, . . . , vn−1}

in množico povezav

E(G) = {vi−1vi | 1 ≤ i ≤ n− 1 ∧ i mod 3 6= 0} ∪ {vi−2vi | 2 ≤ i ≤ n− 1 ∧ i mod 3 = 0}.

Definicija 5. Zmaj na n ≥ 5 vozliščih je graf G, ki ima množico vozlišč

V (G) = {v0, v1, . . . , vn−1}

in množico povezav

E(G) = {v0v2, v0v3, v1v2, v1v3, v2v4, v3v4} ∪ {vi−1vi | 5 ≤ i ≤ n− 1 ∧ i mod 3 6= 1}
∪ {vi−2vi | 7 ≤ i ≤ n− 1 ∧ i mod 3 = 1}.

Pohabljeno gosenico z n vozlišči označimo s CriCat(n), zmaja z n vozlišči pa s Kite(n).

Trditev 6. Med vsemi kemijskimi grafi z 2 ≤ n ≤ 20 vozlišči nobeno π vezno število ne
preseže meje

√
3 iz domneve 1. �

Glede na rezultate, ki smo jih dobili z računalnikom, smo postavili naslednjo domnevo:
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Domneva 3. Kemijski graf, ki doseže največje π vezno število med vsemi grafi z n vozlišči,
je Kite(n) v primeru, ko je n ≥ 14 in n mod 3 = 2. V vseh ostalih primerih največje π
vezno število doseže graf CriCat(n). �

Če se omejimo le na kemijska drevesa, se izkaže, da za 2 ≤ n ≤ 20 največje π vezno število
doseže pohabljena gosenica CriCat(n). To nas napeljuje k naslednji domnevi:

Domneva 4. Kemijsko drevo, ki doseže največje π vezno število med vsemi kemijskimi
drevesi z n vozlišči, je CriCat(n). �

Preiskali smo tudi vse fulerene, ki imajo največ 100 vozlišč. Rezultati so prikazani v
tabeli 4.5, njihove slike pa najdete v dodatku B. Izkazalo se je, da noben fuleren z n ≤ 100
vozlišči ne preseže meje

√
3 iz domneve 1. Opazili smo, da v teh fulerenih največje π

vezno število vedno realizira vozlišče, ki je incidenčno trem šestkotniškim licem, razen če
so petkotniška lica razporejena tako, da ne dopuščajo vozlišč, ki bi bila incidenčna zgolj s
šestkotniškimi lici. Postavili smo naslednjo domnevo:

Domneva 5. Naj bo F fuleren in V ⊂ V (F) množica vozlišč, ki so incidenčna trem šestkot-
niškim licem. Če je množica V neprazna, potem je vsako vozlišče, ki realizira maksimalno
π vezno število v fulerenu F , nujno element množice V. �

Poiskali smo tudi vse fulerene, ki dosežejo minimalno vrednost maxrNr med vsemi
fulereni z n vozlišči. Rezultati so prikazani v tabeli 4.6, slike pa najdete v dodatku B.
Če primerjamo fulerene, ki maksimizirajo vrednost maxrNr, s tistimi, ki to vrednost mi-
nimizirajo, opazimo, da je v večini primerov (toda ne vedno) grupa simetrij fulerena, ki
minimizira maxrNr, večja od grupe simetrij fulerena, ki to vrednost maksimizira. Opazimo
tudi, da se v tabeli 4.6 pogosto pojavljajo nanocevke, katerih kapice so obliži na sliki 4.6.

Simetrije nam torej niso v pomoč, če iščemo kemijske grafe, ki dosežejo velike vrednosti
maxrNr. Intuicija pravi, da se mora mnogo vozlišč žrtvovati, če želimo, da eno med njimi
zbere dovolj naboja. Temu bi lahko rekli tudi princip mušketirjev (“Vsi za enega, eden za
vse!”).

Preiskali smo tudi benzenoide, ki imajo največ n ≤ 32 vozlišč. Iskali smo tako tiste,
ki minimizirajo vrednost maxrNr, kot tudi tiste, ki to vrednost maksimizirajo. Tudi ben-
zenoidi, ki smo jih preiskali, ne presežejo meje

√
3 iz domneve 1. Če nas zanimajo kemijski

grafi, ki imajo velike vrednosti maxrNr, jih gotovo ne bomo našli med benzenoidi in fulereni.
Benzenoidi so pomembna družina ogljikovodikov. Obravnavamo jih v petem poglavju.

V monografiji [102] jih Gutman in Cyvin definirata kot kondenzirane policiklične nenasičene
konjugirane ogljikovodike, ki so sestavljeni zgolj iz šestkotniških obročev. V razdelku 5.2
natančno spoznamo neskončno šestkotniško mrežo, ki jo označimo s H. V naslednjem
razdelku predstavimo klasični pristop k teoriji benzenoidov. V razdelku 5.4 pa obravnavamo
nov pristop k teoriji heksagonalnih sistemov, ki temelji zgolj na incidencah med šestkotniki,
ki tvorijo neskočno šestkotniško mrežo H.

Na H poglejmo kot na neskončno množico šestkotnikov. Heksagonalni sistem K ⊆ H je
poljubna podmnožica množice H. Če imata šestkotnika a in b skupno povezavo, pravimo,
da sta sosedna in pišemo a ∼ b. Šestkotnika a in b sta v relaciji ≡K, a ≡K b, če obstaja
zaporedje

c0 = a, c1, c2, . . . , cm = b, (8.19)
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kjer je ci−1 ∼ ci za vse i = 1, 2, . . . ,m in ci ∈ K. Jasno je, da je ≡K ekvivalenčna relacija,
heksagonalni sistem K pa razpade na ekvivalenčne razrede {Ci}i∈C(K), ki jih imenujemo
povezane komponente. Pravimo, da je heksagonalni sistem povezan, če ima eno samo
povezano komponento. Benzenoide in koronoide definiramo takole:

Definicija 6. Koronoid K je končen povezan heksagonalni sistem. Če je tudi njegov kom-
plement K{ povezan, mu pravimo benzenoid.

Nato dokažemo zelo uporabno lemo:

Lema 7. Naj bo K končni heksagonalni sistem. Njegov komplement K{ ima d + 1, d ≥ 0,
(tj. končno mnogo) povezanih komponent:

K{ = C∞ t C1 t C2 t . . . t Cd. (8.20)

Vsaka od teh komponent razen ene, ki je označena s C∞, je končna. Vsaka končna kompo-
nenta Ci, 1 ≤ i ≤ d, je koronoid. �

Zgornja lema seveda ne velja za neskončne heksagonalne sisteme. S pomočjo zgornje leme
smo pokazali naslednji izrek:

Izrek 8. Naj bo K koronoid. Njegov komplement K{ ima končno število b(K) = d + 1,
d ≥ 0, povezanih komponent B∞,B1,B2, . . . ,Bd ter velja:

K{ = B∞ t B1 t B2 t . . . t Bd. (8.21)

Natanko ena od teh komponent, ki je označena z B∞, je neskončna, ostale komponente pa
so benzenoidi. Tudi B{∞ je benzenoid. �

Benzenoidom B1, . . . ,Bd v zgornjem izreku pravimo koronalne odprtine.
Definirali smo benzenoidno zaprtje koronoida K in sicer kot presek vseh benzenoidov,

ki vsebujejo K kot podmnožico. Benzenoidno zaprtje koronoida K označimo s K. Pokazali
smo, da je K = B{∞, kjer je heksagonalni sistem B∞ definiran kot v izreku 8. Pokazali smo
tudi, da je presek dveh benzenoidov končen heksagonalni sistem, čigar povezane komponente
so benzenoidi.

Avtomorfizmi neskončne šestkotniške mreže H so bijekcije φ : H → H, za katere velja,
da je φ(a) ∼ φ(b) natanko tedaj, ko je a ∼ b. Grupo vseh avtomorfizmov neskončne
šestkotniške mrežeH označimo z Aut(H). Heksagonalna sistemaH in L sta ekvivalentna, če
obstaja ψ ∈ Aut(H), da je ψ(K) = L. Koronoid je degeneriran, če ima koronalno odprtino,
ki jo sestavlja en sam šestkotnik. Nedegenerirano zaprtje koronoida K, NonDeg(K), je
presek vseh nedegeneriranih koronoidov, ki vsebujejo K kot podmnožico.

Z G(K) označimo 1-skelet koronoida K. Grafu G(K) pravimo koronoidni graf. Velja
naslednje:

Izrek 9. Naj bo K koronoid in naj bo C ⊆ G(K) cikel dolžine 6. Potem lahko C ↪→ G(H)
razširimo do vložitve G(K) ↪→ G(H) na en sam način. �

Dokaz je konstruktiven in porodi algoritem za vlaganje poljubnega koronoidnega grafa v
neskončno heksagonalno mrežo H. Pokazali smo naslednjo lemo:
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Lema 10. Naj bo K koronoid in naj bo G graf, za katerega velja G ∼= G(K). Potem obstaja
(do simetrije natančno) natanko en nedegeneriran koronoid N , da je G ∼= G(N ). Še več,
N ∼= NonDeg(K). �

Izkaže se tudi, da rob vsake koronalne odprtine nedegeneriranega koronoida vsebuje vsaj
dve vozlišči stopnje 2.

V razdelku 5.5 se seznanimo s kodo robnih povezav benzenoida. To je en od popularnej-
ših kombinatoričnih opisov benzenoidov. Kodo robnih povezav dobimo tako, da obhodimo
rob benzenoida (začenši pri vozlišču stopnje 3) in štejemo robne povezave med dvema
zaporednima vozliščema stopnje 3. Koda lahko vsebuje števila med 1 in 5. Edina izjema je
benzen, ki ima kodo 6 (saj nima nobenega vozlišča stopnje 3). Če na kodi robnih povezav
naredimo ciklični pomik ali obrat, dobimo ekvivalentno kodo. Leksikografsko največji med
njimi pravimo kanonična koda robnih povezav. Če podamo kodo robnih povezav, potem je
benzenoid enolično določen (do simetrije natančno).

Generiranje benzenoidov omogoča programski paket CaGe, ki je brezplačen in javno
dostopen na naslovu https://caagt.ugent.be/CaGe/. V tem delu opišemo zelo preprost
algoritem za generiranje benzenoidov, ki uporablja robno kodo povezav.

V razdelku 5.6 obravnavamo konveksne benzenoide. Naša definicija konveksnega ben-
zenoida je:

Definicija 7. Benzenoid B je konveksen, če je za vsak par šestkotnikov a, b ∈ B cel interval
IH(a, b) vsebovan v B.

To je običajna (geodezična) definicija konveksnosti v metrični teoriji grafov.

Definicija 8. Benzenoid B zadošča pravilu majhnega paralelograma, če za vsak par šestkot-
nikov a, b ∈ B, kjer je dH(a, b) = 2, velja

dB(a, b) = 2 =⇒ IH(a, b) ⊆ B. (8.22)

Nato pokažemo:

Trditev 11. Benzenoid B je konveksen, če in samo če:

(a) je B povezan in

(b) B zadošča pravilu majhnega paralelograma.

�

Iz kode robnih povezav lahko enostavno razberemo, če je benzenoid konveksen:

Trditev 12. Benzenoid B je konveksen natanko tedaj, ko njegova koda robnih povezav ne
vsebuje simbola 1. �

Neskončen benzenoid je neskončen heksagonalni sistem K, katerega komplement K{ je
bodisi povezan in neskončen bodisi prazna množica. Primer neskončnega benzenoida je
benzenoid, ki ga imenujemo polravnina (K3 na sliki 5.9). Dokažemo naslednji izrek:
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Izrek 13. Obstaja neštevno mnogo (neekvivalentnih) neskončnih benzenoidov. �

Konveksne benzenoide je mogoče karakterizirati še na en način:

Trditev 14. Benzenoid B (končen ali neskončen) je konveksen, če in samo če ga lahko
dobimo kot presek polravnin. �

Izkaže se, da obstaja (do simetrije natančno) le števno mnogo neskončnih konveksnih ben-
zenoidov in sicer trije sporadični primeri, tri enoparametrične družine in ena dvoparametrič-
na družina. Končne konveksne benzenoide smo klasificirali v 6 družin, ki jim pravimo fun-
damentalne družine konveksnih benzenoidov in sicer so to: linearna veriga, enakostranični
trikotnik, enakokraki trapez, romboid, petkotniški benzenoid in šestkotniški benzenoid. Za
vse fundamentalne družine smo poiskali enolično parametrizacijo in kode robnih povezav.
Konveksnost je mogoče opisati še na en način:

Trditev 15. Končen benzenoid B je konveksen, če in samo če je ekvivalenten nekemu
pripadniku ene od fundamentalnih družin. �

Ta karakterizacija je omogočila izpeljavo hitrega algoritma za enumeracijo konveksnih ben-
zenoidov.

Razdelek 5.7 je posvečen Kekuléjevim strukturam benzenoidov. Najprej definiramo
popoln sistem poti in predstavimo izrek, ki pove, da so popolni sistemi poti v povratnoeno-
lični korespondenci s Kekuléjevimi strukturami v koronoidih. Nato za vsako fundamentalno
družino konveksnih benzenoidov podamo eksplicitno formulo za izračun števila Kekuléjevih
struktur. Na koncu predstavimo še Sachsev algoritem, ki v linearnem času preveri, če je
benzenoid Kekuléjev.

V šestem poglavju obravnavamo obliže. Obliž je (2-povezan) ravninski graf, v katerem
lahko nastopajo lica različnih dolžin (ne le šestkotniška, tako kot pri benzenoidih). Notranja
vozlišča so stopnje 3, robna pa so lahko stopnje 2 ali 3. Tudi na obližih lahko definiramo
kodo robnih povezav, vendar ta koda obliža ne določa nujno enolično. Obliž, v katerem
nastopajo le lica dolžine 5 ali 6, se imenuje fulerenski obliž. Obliž je konveksen, če se v
njegovi kodi robnih povezav ne pojavi simbol 1. Obliže in naluknjane obliže obravnavamo v
tem delu na enak način, kot smo obravnavali benzenoide in koronoide v razdelku 5.4. Obliž
je posplošitev benzenoida, naluknjan obliž pa je posplošitev koronoida. Razvijemo teorijo,
ki je v analogiji s teorijo iz razdelka 5.4, le da namesto neskončne heksagonalne mreže H
uporabimo poljuben kubični graf, ki je vložen v ravnino. Na koncu nakažemo, kako lahko
rezultate posplošimo na neskončne kubične grafe, in utemeljimo, da mora izbrana vložitev
neskončnega kubičnega grafa zadoščati nekaterim dodatnim predpostavkam, sicer naletimo
na nekatere težave, ki so topološke narave.

Sedmo poglavje je posvečeno altanom. To je družina kemijskih grafov, ki je bila v zad-
njem času deležna precejšnje pozornosti večih teoretičnih kemikov in matematikov. Mallion,
Dickens, Zanasi in njegovi soavtorji so jih obravnavali predvsem v povezavi z obročnimi
tokovi. Sprva so altane definirali le za benzenoide in nekatere obliže, Gutman pa je defini-
cijo posplošil na poljubne grafe.

Naj bo (G,S) urejeni par, kjer je G graf, S pa ciklično urejena podmnožica njegovih
vozlišč, ki ji pravimo periferni koren. Operacija altan par (G,S) preslika v nov par (G1, S1),
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ki ga dobimo na sledeč način: Predpostavimo, da je V (G) = {0, 1, . . . , n − 1} in da ima
množica S k elementov. Naj bo

S0 = {n, n+ 1, . . . , n+ k − 1} in S1 = {n+ k, n+ k + 1, . . . , n+ 2k − 1}. (8.23)

Graf G1 dobimo tako, da vozliščem grafa G dodamo še S0 ∪ S1. Nato grafu G1 dodamo še
nove povezave. Vozlišča S0 ∪ S1 povežemo v cikel C dolžine 2k:

(n, n+ k, n+ 1, n+ k + 1, . . . , n+ k − 1, n+ 2k − 1, n). (8.24)

Poleg teh dodamo še povezave (si, n + i), 0 ≤ i < k, kjer je si i-to vozlišče množice S.
Vozlišča na ciklu C, ki so stopnje 2, tvorijo nov periferni koren S1. Altan označimo z
A(G,S).

Altan dvodelnega grafa ni nujno dvodelni graf. Naslednji izrek pove, pod katerimi pogoji
je A(G,S) vendarle dvodelni graf:

Izrek 16. Naj bo (G,S) par, kjer je G graf, množica S pa periferni koren. Altan A(G,S)
je dvodelen natanko tedaj, ko velja:

(a) G je dvodelen graf in

(b) elementi množice S pripadajo isti podmnožici dvodelnega razbitja vozlišč grafa G.

�

Z An(G,S) označimo n-ti altan od (G,S), tj.

A(A(· · ·A︸ ︷︷ ︸
n

(G,S) · · · )). (8.25)

Pravimo mu tudi iterirani altan. Izkaže se, da je An(G,S) dvodelen graf, če in samo
če (G,S) zadošča pogojem iz izreka 16. Definiramo še altane benzenoidov, obližev in
fulerenskih obližev. Med drugim pokažemo naslednji izrek:

Izrek 17. Naj bo B benzenoid. Altan An(B) je nanocevka (s kapico na enem od koncev),
če in samo če je B konveksen. �

Z uporabo Gutmanovih rezultatov smo pokazali, da je število Kekuléjevih struktur altana
An(B) enako 2nK(B). Ta formula velja tudi za obliže.

V razdelku 7.5 uvedemo posplošene altane in iterirane posplošene altane. Posplošeni
altan ima lahko več perifernih korenov hkrati, vendar lahko vsako vozlišče stopnje 2 pripada
kvečjemu enemu od perifernih korenov.

Posplošene altane študiramo še na koronoidih in naluknjanih obližih. Pravi posplošeni
altan koronoida ne bo nikoli spet koronoid. Po drugi strani pa velja:

Izrek 18. Naj bo P naluknjan obliž. Njegov posplošeni altan An(P) je tudi naluknjan obliž.
Še več, če je G(P) 2-povezan, je tudi G(An(P)) 2-povezan. �

Na koncu pokažemo še, da lahko enostavno izračunamo število Kekuléjevih struktur
posplošenega altana, če poznamo število Kekuléjevih struktur osnovnega grafa. Enostavno
lahko izračunamo tudi Paulingove rede vezi posplošenega altana, če poznamo Paulingove
rede vezi osnovnega grafa.


